Responsive image
博碩士論文 etd-0727113-174701 詳細資訊
Title page for etd-0727113-174701
論文名稱
Title
以分子動力學模擬聚苯硫醚高分子與石墨烯複合材料之熱傳導與機械性質
The thermal conductivity and mechanical properties of Poly(p-phenylene sulfide) and graphene nano-composite by molecular dynamics simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-12
繳交日期
Date of Submission
2013-08-27
關鍵字
Keywords
熱傳導率、機械性質、非平衡動力學、Halpin–Tsai 公式、Maxwell–Eucken 公式、聚苯硫醚樹脂、石墨烯
Graphene, Non-equilibrium molecular dynamics, Thermal conductivity, Poly (p-phenylene sulfide), Maxwell–Eucken model, Mechanical properties, Halpin-Tsai model
統計
Statistics
本論文已被瀏覽 5724 次,被下載 1125
The thesis/dissertation has been browsed 5724 times, has been downloaded 1125 times.
中文摘要
本研究主要材料為石墨片(Graphite flake ,GF)、氧化石墨烯(Graphene oxide ,GO)添加於聚苯硫醚樹脂(Polyphenylene Sulfide, PPS)之複合材料,利用分子動力學分別模擬於PPS分別混GF及GO在不同重量百分比下其熱傳導率與機械性質。在熱傳導率分析部分, 本研究使用非平衡動力學(non-equilibrium molecular dynamics simulation ,NEMD)求出材料熱傳導率值,從結果上得知,PPS/GF複合材料之模擬結果與熱壓成型(Hot Press)製程條件下的熱傳導率值趨勢接近,除此之外,我們也發現PPS混GO的熱傳導性質會比混GF來的更好。最後,將純PPS與GF熱傳導率值代入Maxwell–Eucken 公式,可求得不同比例下之複合材料熱傳導率值,我們將模擬運算的結果與公式所得之值做比較,其趨勢是相當接近的,也間接證明模擬模型及方法的正確性。在機械性質部分,本研究探討複合材料受到拉伸時其材料破壞的情況以及楊氏模數在不同比例下的變化。從結果中得知,當PPS/GF複合材料在產生拉伸破壞時,是從GF表面開始破壞;而PPS/GO複合材料因GO強化了GO附近的PPS高分子,進而使遠離GO之PPS部分發生破壞。在楊氏模數的部分,PPS/GO複合材料不論在何種比例下,都比PPS/GF複合材料擁有較高的楊氏模數,並且將純PPS與GF及GO楊氏模數值代入Halpin–Tsai 公式,可求得不同比例下之複合材料楊氏模數值,其公式計算結果與模擬趨勢相近,所以可知模擬之準確性高。
Abstract
In this study, the nanocomposite of PPS/GF(GO) at the different weight fractions was investigated by molecular dynamics. The non-equilibrium molecular dynamics simulation (NEMD) is utilized to calculated the thermal conductivity for PPS/GF and PPS/GO nanocomposite materials. The results of non-equilibrium molecular dynamics simulation confirm that simulation results are in agreement with experimental result for the hot press condition. In addition, we also found the thermal conductivity of PPS/GO nanocomposite is better than PPS/GF nanocomposite. Finally, We can obtain thermal conductivity of PPS/GF nanocomposite material at different weight fraction by the Maxwell–Eucken equation. In this study, the mechanical property of nanocomposite material at different weight fractions are investigated, such as young's modulus and tension failure of material. The young's modulus results of PPS/GO nanocomposite is better than PPS/GF nanocomposite. The phenomena of broke for PPS/GF and PPS/GO are totally different. When PPS/GF nanocomposite materials begins to broke, we can find broke of surface of GF initially. PPS which do not locate near GO are broke first because GO enhance the PPS which are nearby. Finally, The young's modulus values predicted by the Halpin–Tsai model agree well with those by MD simulation approaches.
目次 Table of Contents
圖目錄 iii
表目錄 v
中文摘要 vi
Abstract vii
第一章 序論 1
1.1 研究動機與目的 1
1.2 聚苯硫醚樹脂與石墨烯簡介 3
1.2.1 聚苯硫醚樹脂 (Polyphenylene Sulfide, PPS) 3
1.2.2石墨烯 (Graphene) 4
1.3奈米複合高分子材料文獻回顧 6
1.3.1實驗文獻 6
1.3.2 理論模擬研究 8
1.4 本文架構 10
第二章 模擬方法與理論介紹 11
2.1 分子動力學 11
2.1.1 勢能參數 12
2.1.2 運動方程式 14
2.1.3 積分法則 14
2.1.4 係綜 15
2.1.5 壓力修正(Andersen) 15
2.1.6 溫度修正 17
2.1.6.1 Velocity Scaling 修正理論 17
2.1.6.2 Berendsen temperature coupling修正理論 17
2.2非平衡分子動力學(Non-equilibrium molecular Dynamics, NEMD) 18
第三章 數值模擬方法 20
3.1 週期性邊界 20
3.2 鄰近原子表列法 20
3.2.1 截斷半徑法 21
3.2.2 維理(Verlet)表列法 22
3.2.3 巢室(Cell Link)表列法 22
3.2.4 維理表列法結合巢室表列法 23
3.3 分子動力學流程圖 24
3.5熱傳導率模擬流程 25
3.6 統計之參數計算 26
3.6.1 溶解度參數(Solubility parameter) 26
3.6.2 Least-squares最小平方法 26
3.6.3 熱傳導率 27
3.6.4 Scaling Law 29
3.6.5 機械性質 29
3.6.6 迴轉半徑 (Radius of gyration) 31
第四章 結果分析與討論 32
4.1 PPS高分子與石墨烯之結構模擬 32
4.2 模擬熱傳導率性質 37
4.2.1 熱傳導模擬之模擬結構建構 37
4.2.2熱傳導率結果分析 38
4.3 機械性質 43
4.3.1 機械性質之模擬結構建構 43
4.3.2 拉伸結果分析 44
4.3.3 楊氏模數分析 52
4.3.4 迴轉半徑分析 54
第五章 結論與未來展望 56
5.1 結論 56
5.2 未來展望 57
參考文獻 58
參考文獻 References
[1] L. A. Nelson, Sekhon K.S. and Fritz,J.E., "Direct Heat Pipe Cooling of Semiconductor Devices," Proc.Int.Heat Pipe Conf., vol. 3rd., pp. 373-376, 1978.
[2] C. Meier, A. Gondorf, S. Luttjohann, A. Lorke, and H. Wiggers, "Silicon nanoparticles: Absorption, emission, and the nature of the electronic bandgap," Journal of Applied Physics, vol. 101, May 2007.
[3] M. Terrones, "NANOMATERIALS RESEARCH A big step for Ecuador," Nature Materials, vol. 9, pp. 704-705, Sep 2010.
[4] M. D. Hughes, Y. J. Xu, P. Jenkins, P. McMorn, P. Landon, D. I. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings, F. King, E. H. Stitt, P. Johnston, K. Griffin, and C. J. Kiely, "Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions," Nature, vol. 437, pp. 1132-1135, Oct 2005.
[5] R. J. Davis and E. G. Derouane, "A NONPOROUS SUPPORTED-PLATINUM CATALYST FOR AROMATIZATION OF N-HEXANE," Nature, vol. 349, pp. 313-315, Jan 1991.
[6] J. Li, X. Li, H. J. Zhai, and L. S. Wang, "Au-20: A tetrahedral cluster," Science, vol. 299, pp. 864-867, Feb 2003.
[7] T. Mousavand, J. Zhang, S. Ohara, M. Umetsu, T. Naka, and T. Adschiri, "Organic-ligand-assisted supercritical hydrothermal synthesis of titanium oxide nanocrystals leading to perfectly dispersed titanium oxide nanoparticle in organic phase," Journal of Nanoparticle Research, vol. 9, pp. 1067-1071, Dec 2007.
[8] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods," Applied Physics Letters, vol. 80, pp. 4232-4234, Jun 2002.
[9] J. H. Hsieh, C. C. Chang, Y. K. Chang, and J. S. Cherng, "Photocatalytic and antibacterial properties of TaON-Ag nanocomposite thin films," Thin Solid Films, vol. 518, pp. 7263-7266, Oct 2010.
[10] S. Iijima, "HELICAL MICROTUBULES OF GRAPHITIC CARBON," Nature, vol. 354, pp. 56-58, Nov 1991.
[11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, pp. 197-200, Nov 2005.
[12] S. I. Lee and B. C. Chun, "Mechanical properties and fracture morphologies of poly(phenylene sulfide)/nylon66 blends - effect of nylon66 content and testing temperature," Journal of Materials Science, vol. 35, pp. 1187-1193, Mar 2000.
[13] W. H. Tang, X. Y. Hu, J. Tang, and R. G. Jin, "Toughening and compatibilization of polyphenylene sulfide/nylon 66 blends with SEBS and maleic anhydride grafted SEBS triblock copolymers," Journal of Applied Polymer Science, vol. 106, pp. 2648-2655, Nov 2007.
[14] R. C. Zhang, Y. G. Huang, M. Min, Y. Gao, A. Lu, and Z. Y. Lu, "Nonisothermal crystallization of polyamide 66/poly(phenvlene sulfide) blends," Journal of Applied Polymer Science, vol. 107, pp. 2600-2606, Feb 2008.
[15] N. K. Geim AK, "The rise of graphene," Nature Mater., vol. 6, pp. 181-191, 2007.
[16] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, "Giant intrinsic carrier mobilities in graphene and its bilayer," Physical Review Letters, vol. 100, Jan 2008.
[17] A. A. Balandin, S. Ghosh, D. L. Nika, and E. P. Pokatilov, "Thermal Conduction in Suspended Graphene Layers," Fullerenes Nanotubes and Carbon Nanostructures, vol. 18, pp. 474-486, 2010.
[18] V. Varshney, S. S. Patnaik, A. K. Roy, and B. L. Farmer, "Modeling of Thermal Conductance at Transverse CNT-CNT Interfaces," Journal of Physical Chemistry C, vol. 114, pp. 16223-16228, Oct 2010.
[19] J. W. Jiang, J. H. Lan, J. S. Wang, and B. W. Li, "Isotopic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism," Journal of Applied Physics, vol. 107, pp. 054314 - 054314-5, Mar 2010.
[20] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, Jul 2008.
[21] J. L. Tsai and J. F. Tu, "Characterizing mechanical properties of graphite using molecular dynamics simulation," Materials & Design, vol. 31, pp. 194-199, Jan 2010.
[22] Y. F. Yang, J. Wang, J. Zhang, J. C. Liu, X. L. Yang, and H. Y. Zhao, "Exfoliated Graphite Oxide Decorated by PDMAEMA Chains and Polymer Particles," Langmuir, vol. 25, pp. 11808-11814, Oct 2009.
[23] G. Williams, B. Seger, and P. V. Kamat, "TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide," Acs Nano, vol. 2, pp. 1487-1491, Jul 2008.
[24] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, and I. A. Aksay, "Functionalized single graphene sheets derived from splitting graphite oxide," Journal of Physical Chemistry B, vol. 110, pp. 8535-8539, May 2006.
[25] H. L. Guo, X. F. Wang, Q. Y. Qian, F. B. Wang, and X. H. Xia, "A Green Approach to the Synthesis of Graphene Nanosheets," Acs Nano, vol. 3, pp. 2653-2659, Sep 2009.
[26] H. G. Duan, E. Q. Xie, L. Han, and Z. Xu, "Turning PMMA nanofibers into graphene nanoribbons by in situ electron beam irradiation," Advanced Materials, vol. 20, pp. 3284-+, Sep 2008.
[27] H. Kim, A. A. Abdala, and C. W. Macosko, "Graphene/Polymer Nanocomposites," Macromolecules, vol. 43, pp. 6515-6530, Aug 2010.
[28] J. W. Wang, M. Wu, Y. H. Li, F. Luo, F. Chen, S. G. Chai, and Q. Fu, "Preparation of expanded graphite/poly (phenylene sulfide) composites with high thermal and electrical conductivity by rotating solid-state premixing and melt processing," Journal of Materials Science, vol. 48, pp. 1932-1939, Mar 2013.
[29] M. A. Raza, A. V. K. Westwood, and C. Stirling, "Effect of processing technique on the transport and mechanical properties of graphite nanoplatelet/rubbery epoxy composites for thermal interface applications," Materials Chemistry and Physics, vol. 132, pp. 63-73, Jan 2012.
[30] A. P. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, "Graphite nanoplatelet-epoxy composite thermal interface materials," Journal of Physical Chemistry C, vol. 111, pp. 7565-7569, May 2007.
[31] X. Jiang and L. T. Drzal, "Multifunctional High-Density Polyethylene Nanocomposites Produced by Incorporation of Exfoliated Graphene Nanoplatelets 2: Crystallization,Thermal and Electrical Properties," POLYMER COMPOSITES, pp. 636-642, 2012.
[32] A. Moisala, Q. Li, I. A. Kinloch, and A. H. Windle, "Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites," Composites Science and Technology, vol. 66, pp. 1285-1288, Aug 2006.
[33] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer, "Carbon nanotube composites for thermal management," Applied Physics Letters, vol. 80, pp. 2767-2769, Apr 2002.
[34] K. H. P. Sung Ho Song , Bo Hyun Kim , Yong Won Choi , Gwang Hoon Jun ,Dong Ju Lee , Byung-Seon Kong , Kyung-Wook Paik , and Seokwoo Jeon *, "Enhanced Thermal Conductivity of Epoxy–Graphene Composites by Using Non-Oxidized Graphene Flakes with Non-Covalent Functionalization," Advanced Materials, vol. 25, pp. 732–737, 2012.
[35] Y. S. Song and J. R. Youn, "Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites," Carbon, vol. 43, pp. 1378-1385, Jun 2005.
[36] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, "Impermeable atomic membranes from graphene sheets," Nano Letters, vol. 8, pp. 2458-2462, Aug 2008.
[37] G. Carotenuto, S. De Nicola, M. Palomba, D. Pullini, A. Horsewell, T. W. Hansen, and L. Nicolais, "Mechanical properties of low-density polyethylene filled by graphite nanoplatelets," Nanotechnology, vol. 23, Dec 2012.
[38] X. Zhao, Q. H. Zhang, D. J. Chen, and P. Lu, "Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites," Macromolecules, vol. 43, pp. 2357-2363, Mar 2010.
[39] J. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. F. Ma, T. Y. Guo, and Y. S. Chen, "Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites," Advanced Functional Materials, vol. 19, pp. 2297-2302, Jul 2009.
[40] T. N. Zhou, F. Chen, C. Y. Tang, H. W. Bai, Q. Zhang, H. Deng, and Q. Fu, "The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite," Composites Science and Technology, vol. 71, pp. 1266-1270, Jun 2011.
[41] D. F. Wu, L. F. Wu, W. D. Zhou, T. Yang, and M. Zhang, "Study on Physical Properties of Multiwalled Carbon Nanotube/Poly(phenylene sulfide) Composites," Polymer Engineering and Science, vol. 49, pp. 1727-1735, Sep 2009.
[42] J. H. Yang, T. Xu, A. Lu, Q. Zhang, H. Tan, and Q. Fu, "Preparation and properties of poly (p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding," Composites Science and Technology, vol. 69, pp. 147-153, Feb 2009.
[43] Z. Y. Jiang, P. Hornsby, R. McCool, and A. Murphy, "Mechanical and thermal properties of polyphenylene sulfide/multiwalled carbon nanotube composites," Journal of Applied Polymer Science, vol. 123, pp. 2676-2683, Mar 2012.
[44] M. El Achaby and A. Qaiss, "Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes," Materials & Design, vol. 44, pp. 81-89, Feb 2013.
[45] T. P. Falat, B. Felba, J., "Molecular Dynamics Study of the Chiral Vector Influence on Thermal Conductivity of Carbon Nanotubes," IEEE, vol. 987, p. 4244, 2009.
[46] Y. F. Gao and Q. Y. Meng, "MOLECULAR DYNAMICS SIMULATION ON THERMAL CONDUCTIVITY OF ONE DIMENISON NANOMATERIALS," Acta Metallurgica Sinica, vol. 46, pp. 1244-1249, Oct 2010.
[47] L. Hu, T. Desai, and P. Keblinski, "Thermal transport in graphene-based nanocomposite," Journal of Applied Physics, vol. 110, p. 033517, Aug 2011.
[48] H. Eslami, L. Mohammadzadeh, and N. Mehdipour, "Reverse nonequilibrium molecular dynamics simulation of thermal conductivity in nanoconfined polyamide-6,6," Journal of Chemical Physics, vol. 135, Aug 2011.
[49] D. Hossain, M. A. Tschopp, D. K. Ward, J. L. Bouvard, P. Wang, and M. F. Horstemeyer, "Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene," Polymer, vol. 51, pp. 6071-6083, Nov 2010.
[50] C. Y. Li, A. R. Browning, S. Christensen, and A. Strachan, "Atomistic simulations on multilayer graphene reinforced epoxy composites," Composites Part a-Applied Science and Manufacturing, vol. 43, pp. 1293-1300, Aug 2012.
[51] M. Bohlen and K. Bolton, "Molecular dynamics studies of the influence of single wall carbon nanotubes on the mechanical properties of Poly(vinylidene fluoride)," Computational Materials Science, vol. 68, pp. 73-80, Feb 2013.
[52] R. Rahman and A. Haque, "Molecular dynamic simulation of graphene reinforced nanocomposites for evaluating elastic constants," Procedia Engineering, vol. 56, pp. 789-794, 2013.
[53] X. B. Sun, A. P. Yu, P. Ramesh, E. Bekyarova, M. E. Itkis, and R. C. Haddon, "Oxidized Graphite Nanoplatelets as an Improved Filler for Thermally Conducting Epoxy-Matrix Composites," Journal of Electronic Packaging, vol. 133, Jun 2011.
[54] S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R. S. Ruoff, "Graphene oxide papers modified by divalent ions - Enhancing mechanical properties via chemical cross-linking," Acs Nano, vol. 2, pp. 572-578, Mar 2008.
[55] I. J. H* and K. J. G*, "The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics," J. Chem. Phys., vol. 18, p. 817, 1950.
[56] H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications - Overview with details on alkane and benzene compounds," Journal of Physical Chemistry B, vol. 102, pp. 7338-7364, Sep 1998.
[57] J. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. D.Evanseck, M. J. Field, S. Fischer, J. Gao, H.Guo, S. Ha, D.Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S.Michnick, T. Ngo, D. T. Nguyen, B. Prodhom,W. E. Reiher, III, B.Roux, M. Schlenkrich, J.C.Smith,R.Stote,J.Straub,M.Watanabe,Wio’rkiewicz-Kuczera,D.Yin,M.Karplus. , "All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins," Phys. Chem. B., vol. 102, pp. 3586-3616, 1998.
[58] S. N. a. C. S. N. Chandra, "Local elastic properties of carbon nanotubes in the presence of tone-wales defects," Physical Review B, vol. 69, 2004.
[59] D. J. T. M. P. Allen, Comput. Simul. Liquids, Clarendon Press:Oxford Science Publications: London, 1987.
[60] C. J. Mundy1, S. Balasubramanian, K. Bagchi, M. E. Tuckerman, G. J. Martyna, and M. L. Klein, "Nonequilibrium Molecular Dynamics," Reviews in Computational Chemistry, vol. 14, 2007.
[61] D. C. Rapaport, "The art of molecular dynamics simulation," Cambridge University Press: London, 1997.
[62] D. Frenkel and B. Smit, "Computer simulation of liquids," Academic Press: San Diego, 1991.
[63] D. Frenkel and B. Smit, "Understanding molecular simulation," Academic Press: San Diego, 1996.
[64] A. Maiti, G. D. Mahan, and S. T. Pantelides, "Dynamical simulations of nonequilibrium processes - Heat flow and the Kapitza resistance across grain boundaries," Solid State Communications, vol. 102, pp. 517-521, May 1997.
[65] P. K. Schelling, S. R. Phillpot, and P. Keblinski, "Comparison of atomic-level simulation methods for computing thermal conductivity," Physical Review B, vol. 65, p. 144306, Apr 2002.
[66] C. Oligschleger and J. C. Schon, "Simulation of thermal conductivity and heat transport in solids," Physical Review B, vol. 59, pp. 4125-4133, Feb 1999.
[67] R. H. H. Poetzsch and H. Bottger, "INTERPLAY OF DISORDER AND ANHARMONICITY IN HEAT-CONDUCTION - MOLECULAR-DYNAMICS STUDY," Physical Review B, vol. 50, pp. 15757-15763, Dec 1994.
[68] T. F. Luo, K. Esfarjani, J. Shiomi, A. Henry, and G. Chen, "Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane (PDMS)," Journal of Applied Physics, vol. 109, p. 074321, Apr 2011.
[69] P. K. Hasan Babaei , J.M. Khodadadi, "Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene," International Journal of Heat and Mass Transfer, vol. 58, pp. 209-219, 2013.
[70] D. N. Theodorou and U. W. Suter, "ATOMISTIC MODELING OF MECHANICAL-PROPERTIES OF POLYMERIC GLASSES," Macromolecules, vol. 19, pp. 139-154, Jan 1986.
[71] J. H. Weiner, "Statistical Mechanics of Elasticity," John Wiley: New York
[72] N. BULAKH and J. P. JOG, "Crystallization of Poly( Phenylenesulf Me)/Amorphous Polyamide Blends: DSC and Microscopic Studies," Journal of Macromolecular Science, vol. 38, pp. 277-287, 1999.
[73] M. Naffakh, A. M. Diez-Pascual, C. Marco, and G. Ellis, "Morphology and thermal properties of novel poly(phenylene sulfide) hybrid nanocomposites based on single-walled carbon nanotubes and inorganic fullerene-like WS2 nanoparticles," Journal of Materials Chemistry, vol. 22, pp. 1418-1425, 2012.
[74] J. Gupta, C. Nunes, S. Vyas, and S. Jonnalagadda, "Prediction of Solubility Parameters and Miscibility of Pharmaceutical Compounds by Molecular Dynamics Simulations," Journal of Physical Chemistry B, vol. 115, pp. 2014-2023, Mar 2011.
[75] T. F. Luo and J. R. Lloyd, "Enhancement of Thermal Energy Transport Across Graphene/Graphite and Polymer Interfaces: A Molecular Dynamics Study," Advanced Functional Materials, vol. 22, pp. 2495-2502, Jun 2012.
[76] S. S. Hashin Z, "A variational approach to the theory of the effective magnetic permeability of multiphase materials," J Appl Phys, vol. 33, pp. 3125-31, 1962.
[77] R. A. Riggleman, H. N. Lee, M. D. Ediger, and J. J. De Pablo, "Free volume and finite-size effects in a polymer glass under stress," Physical Review Letters, vol. 99, Nov 2007.
[78] A. Arinstein, M. Burman, O. Gendelman, and E. Zussman, "Effect of supramolecular structure on polymer nanofibre elasticity," Nature Nanotechnology, vol. 2, pp. 59-62, Jan 2007.
[79] P. G. Song, Z. H. Cao, Y. Z. Cai, L. P. Zhao, Z. P. Fang, and S. Y. Fu, "Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties," Polymer, vol. 52, pp. 4001-4010, Aug 2011.
[80] Z. H. Cao, P. A. Song, Z. P. Fang, Y. Y. Xu, Y. Zhang, and Z. H. Guo, "Physical wrapping of reduced graphene oxide sheets by polyethylene wax and its modification on the mechanical properties of polyethylene," Journal of Applied Polymer Science, vol. 126, pp. 1546-1555, Dec 2012.
[81] Q. H. Zhang, F. Fang, X. Zhao, Y. Z. Li, M. F. Zhu, and D. J. Chen, "Use of dynamic rheological behavior to estimate the dispersion of carbon nanotubes in carbon nanotube/polymer composites," Journal of Physical Chemistry B, vol. 112, pp. 12606-12611, Oct 2008.
[82] B. Shen, W. T. Zhai, M. M. Tao, D. D. Lu, and W. G. Zheng, "Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites," Composites Science and Technology, vol. 77, pp. 87-94, Mar 2013.
[83] J. C. Halpin and J. L. Kardos, "HALPIN-TSAI EQUATIONS - REVIEW," Polymer Engineering and Science, vol. 16, pp. 344-352, 1976.
[84] D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites," Applied Physics Letters, vol. 76, pp. 2868-2870, May 2000.
[85] C. Gomez-Navarro, M. Burghard, and K. Kern, "Elastic properties of chemically derived single graphene sheets," Nano Letters, vol. 8, pp. 2045-2049, Jul 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code