Responsive image
博碩士論文 etd-0727113-174818 詳細資訊
Title page for etd-0727113-174818
論文名稱
Title
結合密度泛函理論與分子動力學研究應力對聚甘醇酸降解速率之影響
The stress effects on degradation rate of poly glycolic acid by the density functional theory and molecular dynamics studies
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-12
繳交日期
Date of Submission
2013-08-27
關鍵字
Keywords
過渡態理論、聚甘醇酸、密度泛函理論、分子動力學、反應速率
molecular dynamics, transition state theory, density functional theory, Polyglycolic acid, reaction rate
統計
Statistics
本論文已被瀏覽 5711 次,被下載 496
The thesis/dissertation has been browsed 5711 times, has been downloaded 496 times.
中文摘要
本文利用密度泛函理論 (Density Functional Theory, DFT)及分子動力學
(Molecule Dynamics, MD)來模擬計算聚甘醇酸分子受機械應力作用時是否會加 速其降解速度,本文研究分為兩個部分:
1. 利用 DFT 模擬來研究聚甘醇酸及其中間態受機械應力時的水解機制, 並對其在不同應變時的鍵角、扭轉角、鍵長及電子特性進行分析,從應
力應變圖來看聚甘醇酸中間態比聚甘醇酸更容易受到應力的影響,當受 應力作用時聚甘醇酸中間態降解成兩個聚甘醇酸所需的能障也大幅度 的明顯降低,透過 DFT 模擬計算證明了機械負荷是可以提高聚甘醇酸
的降解率。
2. 藉由分子動力學搭配 pcff 勢能參數建構不同分子量的聚甘醇酸模型,
並透過拉伸測試得出各模型的極限強度並推得無限分子量的極限強度, 且利用上一部分求得出之不同應力下的能障及頻率計算出不同應力下 的反應速率。藉由計算來證明不同應力下極限強度隨降解天數變化的關
係,以及在受到不同應力的作用下,確實會加速聚甘醇酸的降解速度。
Abstract
In this study, the degradation rate variation of polyglycolic acid molecule with mechanical stress are investigated by density functional theory (DFT) and molecular dynamics (MD), this study can be arranged into two parts:
In part I: The biodegradation mechanism of polyglycolic acid (PGA) and PGA intermediate of hydrolysis under mechanical stress was studied by the DFT calculation. The variations of bending angle, torsion angle, bond length as well as the electronic properties of PGA and PGA intermediate at different strains were presented. From the stress-strain profile, it shows the variation of the stress of PGA intermediate is more sensitive to the strain as compared to that of PGA. The decrease of energy barrier for the dissociation of PGA intermediate to two PGA molecules under the increasing strains causes the promotion of PGA hydrolysis. Our DFT calculation results have provided a clear explanation for the experimental observation, which the mechanical loading can enhance the PGA degradation rate.
In part II: This study, which employed molecular dynamics combine pcff potential parameters to construct polyethylene glycolic model with different molecular weight. Furthermore, the ultimate strength are obtained through tensile test of each model, and deduced that the ultimate strength of infinite molecular weight. Besides, the reaction rates under different stress are calculated by different barrier and frequency from part I. According to above-mentioned results, the relationship between degradation time and the ultimate strength under different stress are demonstrated by this simulation study, the degradation rate of polyglycolic acid indeed are accelerated under the stress effect.
目次 Table of Contents
中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究背景及動機 1
1.2材料介紹 3
1.3文獻回顧 4
1.3.1 聚甘醇酸應用特性文獻回顧 4
1.3.2 理論模擬方法文獻回顧 6
1.4 本文架構 9
第二章 模擬方法之理論介紹 10
2.1密度泛函理論 10
2.1.1多粒子系統薛丁格方程式 10
2.1.2 Born-Oppenheimer絕熱近似 11
2.1.3 Hohenberg-Kohn 理論 12
2.1.4 Kohn-Sham equation 13
2.1.5交換相關能之近似-(LDA、GGA) 14
2.1.7過渡態理論 (Transition state theory) 17
2.1.6 Nudged elastic band (NEB)方法 18
2.2分子動力學 20
2.2.1勢能參數 20
2.2.2運動方程式 22
2.2.3積分法則 22
2.2.4系綜 23
2.2.5壓力修正 24
2.2.5.1 Andersen修正理論 24
2.2.5.2 Parrinello-Rahman修正理論 25
2.2.6溫度修正方法 26
2.2.6.1 Velocity Scaling 修正理論 26
第三章 數值模擬方法 27
3.1週期邊界 27
3.3原子級應力計算方法 28
3.4鄰近原子表列法 31
3.4.1截斷半徑法 31
3.4.2維理(Verlet)表列法 32
3.4.3巢室(Cell Link)表列法 33
3.4.4維理表列法結合巢室表列法 34
3.6聚酯類分子量與極限應力關係式 35
3.7 LEAST-SQUARES最小二平方法 36
3.8 SCALING LAW 37
3.9分子動力學流程圖 38
第四章 結果與討論 39
4.1 單條聚甘醇酸結構分析 39
4.1.1 聚甘醇酸分子模型建構及參數設定 39
4.1.2 初始態聚甘醇酸拉伸結構與電荷分析 43
4.1.3 中間態聚甘醇酸拉伸結構與電荷分析 48
4.1.4 拉伸行為與能障關係分析 53
4.2 分子動力學模擬 55
4.2.1 物理模型之建構 55
4.2.2 聚甘醇酸物理模型機械性質分析 59
4.2.3 聚甘醇酸反應速率計算及最大應力與降解時間關係 64
第五章 結論與未來展望 67
5.1 結論 67
5.2 未來展望 69
參考文獻 70
參考文獻 References
[1] Wang, Y.F., et al., Single-layer white polymer light-emitting diodes based on an iridium (III) complex containing alkyltrifluorene picolinic acid. Dyes and Pigments, 2011. 91(3): p. 495-500.
[2] Bhandari, H., et al., Conducting films of poly(aniline-co-1-amino-2-naphthol-4-sulfonic acid) blended with LDPE for its application as antistatic encapsulation material. Polymers for Advanced Technologies, 2011. 22(9): p. 1319-1328.
[3] Zhao, F.Q., et al., Preparation and properties of an environment friendly polymer-modified waterproof mortar. Construction and Building Materials, 2011. 25(5): p. 2635-2638.
[4] Lee, J. and J.Y. Jho, Fabrication of highly ordered and vertically oriented TiO(2) nanotube arrays for ordered heterojunction polymer/inorganic hybrid solar cell. Solar Energy Materials and Solar Cells, 2011. 95(11): p. 3152-3156.
[5] M, H., Ecological considerations on the use and production of biosynthetic and synthetic biodegradable polymers. Polymer Degradation and Stability, 1998. 59(1-3): p. 3-6.
[6] Schink, B., P.H. Janssen, and J. Frings, MICROBIAL-DEGRADATION OF NATURAL AND OF NEW SYNTHETIC-POLYMERS. Fems Microbiology Reviews, 1992. 9(2-4): p. 311-316.
[7] Tian, H., et al., Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science, (0).
[8] Tan, R.W., et al., In vitro and in vivo degradation of an injectable bone repair composite. Polymer Degradation and Stability, 2010. 95(9): p. 1736-1742.
[9] Haroun, A.A., Preparation and Characterization of Biodegradable Thermoplastic Films Based on Collagen Hydrolyzate. Journal of Applied Polymer Science, 2010. 115(6): p. 3230-3237.
[10] Kim, H., C.H. Tator, and M.S. Shoichet, Chitosan implants in the rat spinal cord: Biocompatibility and biodegradation. Journal of Biomedical Materials Research Part A, 2011. 97A(4): p. 395-404.
[11] Yadav, V., et al., Novel In Vivo-Degradable Cellulose-Chitin Copolymer from Metabolically Engineered Gluconacetobacter xylinus. Applied and Environmental Microbiology, 2010. 76(18): p. 6257-6265.
[12] Gui, L.Q., et al., Development of Novel Biodegradable Polymer Scaffolds for Vascular Tissue Engineering. Tissue Engineering Part A, 2011. 17(9-10): p. 1191-1200.
[13] Firouzabadi, H., N. Iranpoor, and A. Ghaderi, Solvent-free Mizoroki-Heck reaction catalyzed by palladium nano-particles deposited on gelatin as the reductant, ligand and the non-toxic and degradable natural product support. Journal of Molecular Catalysis a-Chemical, 2011. 347(1-2): p. 38-45.
[14] Lu, S.Y., M.Z. Liu, and B.L. Ni, Degradable, injectable poly(N-isopropylacrylamide)-based hydrogels with low gelation concentrations for protein delivery application. Chemical Engineering Journal, 2011. 173(1): p. 241-250.
[15] Agarwal, S., Chemistry, chances and limitations of the radical ring-opening polymerization of cyclic ketene acetals for the synthesis of degradable polyesters. Polymer Chemistry, 2010. 1(7): p. 953-964.
[16] Ulery, B.D., L.S. Nair, and C.T. Laurencin, Biomedical Applications of Biodegradable Polymers. Journal of Polymer Science Part B-Polymer Physics, 2011. 49(12): p. 832-864.
[17] Emami, S.H., R. Salovey, and T.E. Hogen-Esch, Degradable poly(ethylene oxide) hydrogels formed by crosslinking with tert-butylperoxybenzoate. Journal of Polymer Science Part a-Polymer Chemistry, 2003. 41(4): p. 520-527.
[18] Nair, L.S. and C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007. 32(8-9): p. 762-798.
[19] Grabe, N., Y. Zhang, and S. Agarwal, Degradable Elastomeric Block Copolymers Based on Polycaprolactone by Free-Radical Chemistry. Macromolecular Chemistry and Physics, 2011. 212(13): p. 1327-1334.
[20] Knowles, J.C. and G.W. Hastings, AN INTELLIGENT DEGRADABLE POLYMER COMPOSITE WHICH CLOSELY MATCHES BONE. Journal of Intelligent Material Systems and Structures, 1994. 5(1): p. 122-126.
[21] Coelho, N.S., Y.M.B. Almeida, and G.M. Vinhas, The Biodegradation of Polyhydroxybutyrate-co-valerate/Amphiprotic Starch in the Presence of Microorganisms. Polimeros-Ciencia E Tecnologia, 2008. 18(3): p. 270-276.
[22] Stevanovic, M., et al., ROS-inducing potential, influence of different porogens and in vitro degradation of poly (D,L-lactide-co-glycolide)-based material. Express Polymer Letters, 2011. 5(11): p. 996-1008.
[23] Hoglund, A., et al., Surface Modification Changes the Degradation Process and Degradation Product Pattern of Polylactide. Langmuir, 2010. 26(1): p. 378-383.
[24] de Oca, H.M., D.F. Farrar, and I.M. Ward, Degradation studies on highly oriented poly(glycolic acid) fibres with different lamellar structures. Acta Biomaterialia, 2011. 7(4): p. 1535-1541.
[25] de Oca, H.M., et al., Structure Development during Crystallization and Solid-State Processing of Poly(glycolic acid). Journal of Applied Polymer Science, 2009. 111(2): p. 1013-1018.
[26] Shawe, S., F. Buchanan, and E. Harkin-Jones, A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA). Journal of Materials Science, 2006. 41(15): p. 4832-4838.
[27] Reed, A.M. and D.K. Gilding, BIODEGRADABLE POLYMERS FOR USE IN SURGERY - POLY(GLYCOLIC)-POLY(LACTIC ACID) HOMO AND CO-POLYMERS .2. INVITRO DEGRADATION. Polymer, 1981. 22(4): p. 494-498.
[28] Browning, A. and C.C. Chu, The effect of annealing treatments on the tensile properties and hydrolytic degradative properties of polyglycolic acid sutures. Journal of Biomedical Materials Research, 1986. 20(5): p. 613-632.
[29] Hakkarainen, M., A.-C. Albertsson, and S. Karlsson, Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polymer Degradation and Stability, 1996. 52(3): p. 283-291.
[30] Montes de Oca, H. and I.M. Ward, Structure and mechanical properties of PGA crystals and fibres. Polymer, 2006. 47(20): p. 7070-7077.
[31] Cui, L., et al., Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials, 2009. 30(14): p. 2683-2693.
[32] Gao, J., L. Niklason, and R. Langer, Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. Journal of Biomedical Materials Research, 1998. 42(3): p. 417-424.
[33] Spreafico, A., et al., 175 EFFECT OF HUMAN PLATELET RICH PLASMA RELEASATES ON PROLIFERATION AND MATRIX SYNTHESIS OF HUMAN ARTICULAR CHONDROCYTES GROWN ON A POLYGLYCOLIC ACID-BASED BIOMATERIAL (PGA): MOLECULAR PROTEOMICAL AND IMMUNOFLUORESCENCE ANALYSIS. Osteoarthritis and Cartilage, 2010. 18, Supplement 2(0): p. S85.
[34] Dunne, N., et al., Performance of calcium deficient hydroxyapatite-polyglycolic acid composites: an in vitro study. Journal of Materials Science-Materials in Medicine, 2010. 21(8): p. 2263-2270.
[35] Asato, R., et al., P239. A new method of covering mucosal defect after oral cancer resection – A combination of polyglycolic acid (PGA) sheet and sprayed fibrin glue. Oral Oncology, 2011. 47, Supplement 1(0): p. S150-S151.
[36] Wolf, F.K., A.M. Fischer, and H. Frey, Poly(glycolide) multi-arm star polymers: Improved solubility via limited arm length. Beilstein Journal of Organic Chemistry, 2010. 6.
[37] Qian, Z., et al., Structure and property study of degradable polyesteramide fibres: processing and alkaline degradation behaviour. Polymer Degradation and Stability, 2004. 83(1): p. 127-132.
[38] Wei, C.Y., Structural phase transition of alkane molecules in nanotube composites. Physical Review B, 2007. 76(13).
[39] Wei, C.Y., Adsorption of an alkane mixture on carbon nanotubes: Selectivity and kinetics. Physical Review B, 2009. 80(8).
[40] Falat, T., B. Platek, and J. Felba. Molecular dynamics study of the chiral vector influence on thermal conductivity of carbon nanotubes. in Electronics Packaging Technology Conference, 2009. EPTC '09. 11th. 2009.
[41] Ayyagari, C., D. Bedrov, and G.D. Smith, A molecular dynamics simulation study of the influence of free surfaces on the morphology of self-associating polymers. Polymer, 2004. 45(13): p. 4549-4558.
[42] Choi, P., Molecular dynamics studies of the thermodynamics of HDPE/butene-based LLDPE blends. Polymer, 2000. 41(24): p. 8741-8747.
[43] Abu-Sharkh, B.F., A.M. Giri, and I.A. Hussein, Influence of branch content on the microstructure of blends of linear and octene-branched polyethylene: a MD simulation study. European Polymer Journal, 2004. 40(6): p. 1177-1182.
[44] Entrialgo‐Castaño, M., et al. An atomistic modeling and quantum mechanical approach to the hydrolytic degradation of aliphatic polyesters. in Macromolecular Symposia. 2008. Wiley Online Library.
[45] Zhao, W.H., B. Zheng, and D.T. Haynie, A molecular dynamics study of the physical basis of stability of polypeptide multilayer nanofilms. Langmuir, 2006. 22(15): p. 6668-6675.
[46] Madkour, T.M., A combined statistical mechanics and molecular dynamics approach for the evaluation of the miscibility of polymers in good, poor and non-solvents. Chemical Physics, 2001. 274(2-3): p. 187-198.
[47] Sekine, S., et al., Heterogeneous structure of poly(glycolic acid) fiber studied with differential scanning calorimeter, X-ray diffraction, solid-state NMR and molecular dynamic simulation. Polymer, 2009. 50(25): p. 6083-6090.
[48] Ding, L., R.L. Davidchack, and J. Pan, A molecular dynamics study of Young’s modulus change of semi-crystalline polymers during degradation by chain scissions. Journal of the Mechanical Behavior of Biomedical Materials, 2012. 5(1): p. 224-230.
[49] Rohrig, U.F. and I. Frank, First-principles molecular dynamics study of a polymer under tensile stress. The Journal of Chemical Physics, 2001. 115(18): p. 8670-8674.
[50] Zheng, Q., et al., Influence of chirality on the interfacial bonding characteristics of carbon nanotube polymer composites. Journal of Applied Physics, 2008. 103(4): p. 044302-044302-4.
[51] Li, C. and A. Strachan, Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA. Polymer, 2011. 52(13): p. 2920-2928.
[52] Van Speybroeck, V., et al., Ab Initio and Experimental Study on Thermally Degradable Polycarbonates:  The Effect of Substituents on the Reaction Rates. Journal of the American Chemical Society, 2001. 123(43): p. 10650-10657.
[53] Lund, A. and M. Danilczuk, Monomer- and polymer radicals of vinyl compounds: EPR and DFT studies of geometric and electronic structures in the adsorbed state. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012. 98(0): p. 367-377.
[54] Lin, T.T., X.Y. Liu, and C. He, A DFT study on poly(lactic acid) polymorphs. Polymer, 2010. 51(12): p. 2779-2785.
[55] Ghorbanzadeh Ahangari, M., et al., Electronic and mechanical properties of single-walled carbon nanotubes interacting with epoxy: A DFT study. Physica E: Low-dimensional Systems and Nanostructures, 2013. 48(0): p. 148-156.
[56] Hartree, D.R., The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society, 1928. 24(01): p. 89-110.
[57] Born, M. and R. Oppenheimer, Zur Quantentheorie der Molekeln. Annalen der Physik, 1927. 389(20): p. 457-484.
[58] Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
[59] Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical Review, 1965. 140(4A): p. A1133.
[60] Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
[61] Ceperley, D.M. and B.J. Alder, Ground State of the Electron Gas by a Stochastic Method. Physical Review Letters, 1980. 45(7): p. 566-569.
[62] Behari, J., Use of a model pseudopotential in the calculation of some electronic properties of lead (solid and liquid states). Journal of Physics F: Metal Physics, 1973. 3(8): p. 1553.
[63] Jones, R.O. and O. Gunnarsson, The density functional formalism, its applications and prospects. Reviews of Modern Physics, 1989. 61(3): p. 689-746.
[64] Perdew, J.P., et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1992. 46(11): p. 6671-6687.
[65] Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996. 77(18): p. 3865-3868.
[66] Hammer, B., L.B. Hansen, and J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 1999. 59(11): p. 7413-7421.
[67] Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 1988. 38(6): p. 3098-3100.
[68] Ulitsky, A. and R. Elber, A new technique to calculate steepest descent paths in flexible polyatomic systems. The Journal of Chemical Physics, 1990. 92(2): p. 1510-1511.
[69] Henkelman, G., B.P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of Chemical Physics, 2000. 113: p. 9901.
[70] Mills, G. and H. Jónsson, Quantum and thermal effects in H_ {2} dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. Physical Review Letters, 1994. 72(7): p. 1124-1127.
[71] Pozzo, M. and D. Alfè, Hydrogen dissociation on Mg (0001) studied via quantum Monte Carlo calculations. Physical Review B, 2008. 78(24): p. 245313.
[72] Villarba, M. and H. Jónsson, Atomic exchange processes in sputter deposition of Pt on Pt (111). Surface science, 1995. 324(1): p. 35-46.
[73] Rozanska, X., et al., A periodic DFT study of intramolecular isomerization reactions of toluene and xylenes catalyzed by acidic mordenite. Journal of the American Chemical Society, 2001. 123(31): p. 7655-7667.
[74] Irving, J.H. and J.G. Kirkwood, The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics. The Journal of Chemical Physics, 1950. 18(6): p. 817-829.
[75] Sun, H., et al., An ab Initio CFF93 All-Atom Force Field for Polycarbonates. Journal of the American Chemical Society, 1994. 116(7): p. 2978-2987.
[76] MacKerell, A.D., et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 1998. 102(18): p. 3586-3616.
[77] Teleman, O., B. Jonsson, and S. Engstrom, A MOLECULAR-DYNAMICS SIMULATION OF A WATER MODEL WITH INTRAMOLECULAR DEGREES OF FREEDOM. Molecular Physics, 1987. 60(1): p. 193-203.
[78] Allen, M. and D. Tildesley, Computer simulation of liquids. 1987.
[79] Cleaver, D.J. and M.P. Allen, COMPUTER-SIMULATIONS OF THE ELASTIC PROPERTIES OF LIQUID-CRYSTALS. Physical Review A, 1991. 43(4): p. 1918-1931.
[80] Frenkel, D., Smit, B., Understanding molecular simulation : from algorithms to applications1996.
[81] D.C.Rapaport, The art of molecular dynamic Simulation1997.
[82] Allen, M.P. and D.J. Tildesley, Computer simulation of liquids1989: Oxford university press.
[83] Tokita, N., et al., Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation. The Journal of Chemical Physics, 2004. 120: p. 496.
[84] Srolovitz, D., et al., Structural defects in amorphous solids statistical analysis of a computer model. Philosophical Magazine A, 1981. 44(4): p. 847-866.
[85] Chandra, N., S. Namilae, and C. Shet, Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects. Physical Review B, 2004. 69(9): p. 094101.
[86] Miyazaki, N. and Y. Shiozaki, Calculation of mechanical properties of solids using molecular dynamics method. JSME international journal. Series A, mechanics and material engineering, 1996. 39(4): p. 606-612.
[87] Stokes, K., R. McVenes, and J.M. Anderson, Polyurethane elastomer biostability. Journal of biomaterials applications, 1995. 9(4): p. 321-354.
[88] Pitt, C.G. and G. Zhong-wei, Modification of the rates of chain cleavage of poly (ϵ-caprolactone) and related polyesters in the solid state. Journal of Controlled Release, 1987. 4(4): p. 283-292.
[89] Ward, I., Mechanical properties of solid polymers, 1983, Wiley (Chichester, Sussex and New York).
[90] Luo, T.F., et al., Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane (PDMS). Journal of Applied Physics, 2011. 109(7): p. 074321.
[91] Hasan Babaei , P.K., J.M. Khodadadi, Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene. International Journal of Heat and Mass Transfer, 2013. 58: p. 209-219.
[92] Gill, P.M., et al., The performance of the Becke—Lee—Yang—Parr (B—LYP) density functional theory with various basis sets. Chemical Physics Letters, 1992. 197(4): p. 499-505.
[93] Fukuzumi, S., C. Wong, and J. Kochi, Unified view of Marcus electron transfer and Mulliken charge transfer theories in organometallic chemistry. Steric effects in alkylmetals as quantitative probes for outer-sphere and inner-sphere mechanisms. Journal of the American Chemical Society, 1980. 102(9): p. 2928-2939.
[94] Blomqvist, J., B. Mannfors, and L.O. Pietilä, Amorphous cell studies of polyglycolic, poly(l-lactic), poly(l,d-lactic) and poly(glycolic/l-lactic) acids. Polymer, 2002. 43(17): p. 4571-4583.
[95] Gaur, U., et al., Heat capacity and other thermodynamic properties of linear macromolecules. VIII. Polyesters and polyamides. Journal of Physical and Chemical Reference Data, 1983. 12(1): p. 65-89.
[96] Yang, Q., X. Shen, and Z. Tan, Investigations of the preparation technology for polyglycolic acid fiber with perfect mechanical performance. Journal of Applied Polymer Science, 2007. 105(6): p. 3444-3447.
[97] Riggleman, R.A., et al., Free volume and finite-size effects in a polymer glass under stress. Physical Review Letters, 2007. 99(21).
[98] Arinstein, A., et al., Effect of supramolecular structure on polymer nanofibre elasticity. Nature Nanotechnology, 2007. 2(1): p. 59-62.
[99] Braunecker, J., et al., The effects of molecular weight and porosity on the degradation and drug release from polyglycolide. International Journal of Pharmaceutics, 2004. 282(1): p. 19-34.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code