Responsive image
博碩士論文 etd-0727114-001140 詳細資訊
Title page for etd-0727114-001140
論文名稱
Title
以數值模型研究排孔平板燃燒器及輻射熱效率分析
The Study of Perforated-Plate Burner and Analysis of Radiation Efficiency by Using Numerical Model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-08-12
繳交日期
Date of Submission
2014-08-27
關鍵字
Keywords
輻射熱燃燒器、超焓燃燒、輻射加熱效率
radiation heat efficiency, radiation combustor, excess enthalpy combustion
統計
Statistics
本論文已被瀏覽 5649 次,被下載 87
The thesis/dissertation has been browsed 5649 times, has been downloaded 87 times.
中文摘要
本研究建立二維模型,模擬甲烷-空氣預混氣體在輻射熱燃燒器中燃燒現象,幾何模型為燃燒室內放入排孔平板,簡化成火焰在單一流道中傳播,探討各項參數對火焰穩定存在於排孔平板內位置以及輻射熱燃燒器工作效率影響。模擬採用FLUENT商業套裝軟體進行計算,輻射熱傳則使用UDF方程式掛載,探討表面放射率時使用FLUENT商業套裝軟體內建DO模型,化學反應式採用甲烷單步驟反應式,整個計算域採用均勻正交網格計算。
模擬結果顯示固體熱傳導係數增加,燃氣反應後有較高之絕熱火焰速度和溫度,使火焰往上游移動,當固體熱傳導係數大於20W/m-K,超焓燃燒效果對於增加絕熱火焰溫度效果有限 ; 隨著燃氣入口流速增加,燃氣中心需要較長距離使甲烷消耗率達到100%,並且火焰往下游方向移動,增強對下游加熱量,減少上游對環境輻射熱傳散失量,同時降低燃燒器輻射加熱效率 ; 燃氣入口流速極限時有該當量比下最高絕熱火焰溫度,固體熱傳導係數越大,燃氣入口流速操作範圍越廣 ; 當量比增加絕熱火焰速度和溫度同時提高,燃氣中心甲烷消耗率到達100%所需距離減少,並且火焰往上游移動,提高對環境輻射熱傳散失 ; 排孔平板表面熱傳導係數越好,下游輻射加熱效率越高,整體上來說在低當量比、低入口流速、低平板熱傳導係數、高表面放射率、燃燒器有較佳輻射加熱效率。
Abstract
In this study, established a two dimensional CFD model with orthogonal mesh to simulate the combustion phenomenon of methane-air mixture gas in the radiation combustor. The combustion chamber of this model which consists of a cellular array was simplified to modeling flame propagation inside a channel, and therefore parameters effects of flame ignited location and efficiency of this combustor has been discussed. Using ANSYS FLUENT and user-defined function (UDF) to simulate flame propagating and heat radiation, and using DO model of ANSYS FLUENT to simulate surfaces emissivity. In this study, considering methane and air stoichiometric combustion modeled by a simple one-step irreversible reaction
The results reveal that increase of thermal conductivity results in the increase of adiabatic flame propagating speed and temperature, and thus flame propagats to upstream side. However, when thermal conductivity greater than 20 W/m-K, it was limited for the effects of thermal conductivity to increasing adiabatic flame temperature. If the inlet fuel velocity increase, it needs longer distance to achieve 100% fuel consumption. Flame propagating to the downstream side heats the methane-air mixture gas closed to the downstream side, increases downstream radiation heat flux , reduces radiation heat loss flux to the environment of upstream side and results in worse combustion efficiency. With certain equivalence ratio, at the limit fuel inlet velocity, it causes the maximum adiabatic temperature, but with large solid thermal conductivity it can employ wide range of fuel inlet velocity. With case of large equivalence ratio, adiabatic flame speed and temperature, it needs a shorter distance to achieve 100% fuel consumption, also leads to flame propagate to the upstream side and increases the radiation heat loss. Downstream radiation heat efficiency would increase with increasing perforated-plate internal emissivity. Overall, using a combustor which consists of lower equivalence ratio, lower fuel inlet velocity, lower perforated-plate conductivity, and higher perforated-plate internal emissivity,will gain better radiation heat efficiency.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xiii
符號說明 xiv
第一章 序論 1
1.1前言 1
1.2 輻射熱燃燒器工作原理 3
1.3文獻回顧 7
1.3.1火焰於小管中燃燒 10
1.4研究目的 14
第二章 數值模型 17
2.1數學模型 17
2.2統御方程式 18
2.3輻射模型 23
2.3.1非透明壁面邊界條件處理方式 24
2.4數值方法 26
2.5網格測試和收斂標準 27
第三章 結果與討論 29
3.1.輻射模型比較 30
3.2熱傳導系數對火焰在燃燒器之影響 32
3.3燃氣入口流速對火焰在燃燒器之影響 39
3.3.1平板熱傳導係數2W/m-K 模擬結果 39
3.3.2平板熱傳導係數 20W/-K 46
3.4當量比對火焰在燃燒器之影響 53
3.4.1平板熱傳導係數2W/m-K 模擬結果 53
3.4.2平板熱傳導係數20W/m-K 59
3.5表面放射率對火焰在燃燒器之影響 66
3.5.1平板熱傳導係數2W/m-K 模擬結果 66
3.5.2平板熱傳導係數20W/m-K 模擬結果 72
3.6燃氣入口流速極限 79
第四章 結論 82
第五章 未來展望 84
參考文獻 85
參考文獻 References
[1] S.Wood and A.T.Harris,”Porous burners for lean-burn applications,”Progress in Energy and combustion Science 34(2008):667-684
[2] Baukal ,C.E.,”Chpaper13:Thermal Raidiation Burners,”in Industrial Burners Handbook,CRC Press.
[3] Chen ,J.,Yang,H.,Wang,N.,Ring,Z.,and Dabros,T.,”Mathematical modeling of monolith catalysts and reactors for gas phase reactions,”Applied Catalysis A:General 345(2008):1-11
[4] T.Takento and K.Sato,”An excess enthalpy flame theory,”Combustion Sci.Tech.20(1979):73-84.
[5] Y.Kotani and T.Takeno,”An experimental study on stability and Combustion characteristics of an excess enthalpy flame,”Proceedings of the Sym.(Int.) on Combustion,The Combustion Institute,p.1503-1509,1982.
[6] ]Y.Kotani,H.F.Behbahani,and T.Tankeno”An excess enthalpy flame combustor for extended flow ranges,”Proccedings of the Sym.(Int.) on Combustion,The Combustion Institute,p2025-2033,1984
[7] D.G. Vlachos,L.D.Schmidt and R.Aris,”Ignition and extinction of flame near surfaces:Combustion of in air,”A.I.Ch.E.Journal 40(1994):1005-1017.
[8] S.Raimondeau ,D.Norton,D.G.Vlachos,and R.I.Masel,”Modeling of high temperature microburners,”Proceedings of Combusting Institute 29(2003):901-907.
[9] P.D.Ronney,”Analysis of non-adiabatic heat-recirculating combustors,” Combust.Flame.135(2003):421-439.
[10] Y.Ju and C.W.Choi,”An analysis sub-limit flame dynamics using opposite propagating flames in mesoscale channels,”Combust.Flame(2003):483-493.
[11] Y.Ju and B.Xu,”Theoretical and experetical studies on mesoscale flame propagation and exitntion,”Proceedings of the Combustion Institute 30(2005):2445-2453.
[12] D.G Norton and D.G. Vlachos,”Hydrogen assisted self-ignition of propane/air mixture in catalytic microburners,”Proceedings of the Combustion Institute 30(2005):2473-2480.
[13] P.Aghalayam,P.A.Bui,and D.G. Vlachos,”The role of radical wall quenching in flame stability and wall heat flux:hydrogen-air mixtures,”Combust.Theory Modeling 2(1998):515-530.
[14] J.M.Ahm,C.Eastwood,L.Sitzki, and P.D.Ronney,”gas-phase and catalytic combustion in heat-recirculation burners,”Proceedings of the Combustion Institute 30(2005):2463-2472.
[15] G.A. Boyarko,C.J.Sung and S.J.Schneider,”Catalyzed combustion of hydrogen-oxygen in platinum tubes for micro-propulsion applications,”Proceedings of Combustion Institute 30 (2005):2481-2488.
[16] Bosschaart,K.J.,VersIuis,M.,Knikker,R.,Vandermeer,Th.H.,Schrel,K.R.A.M,De Goey,L.P.H.,and Van Steenhoven,A.A.,”The flux method for producing burner stabilized adiabatic flames :An evaluation with cars thermometry,”Combust.Sci.Tech.169(2001):69-87.
[17] Lewis,B. and von.Elbe,G.,”Combustion,Flames and Explosions of Gases,” ed.,Chapter V,Academic Press ,New York,1961.
[18] Karlovitz,B.,Denniston,D.K.,and Knappschafer,D.H. and Wells,F.,”Studies on turbulent flames,a.flame propagation across velocity gradients,b.turbulence measurement in flames,” Symp.(Int’l) on Combustion,1953,pp.819-826.
[19] Higuera,F.J.,”Effect of fresh gas velocity and thermal expansion on the structure of a Bunsen flame tip,”Combust.Flame 157(2010):1586-1593.
[20] Melvin,A.,and Moss,J.B.,”Evidence for the failure of the flame stretch concept for premixed flames,”Combust.Sci.Tech.7(1973) 189-196.
[21] Kawamura,T.,Asato.K.,Hamaguchi,T.,and Kayahara, H.,”Explanation of the blowoff of inverted flames by the area-increase concept,”Combust.Flame 35(1979):109-116.
[22] Kawamura,T.,Asato,K., and Mazaki,T.,”Reexamination of the blowoff mechanism of premixed flames-inverted flames,”Conbust.Flame 45 (1982):225-233.
[23] Sung,C.J.,Law,C.K., and Umemure,A.,”On adiabatic stabilization of inverted flames,” Symp.(Int’l)om Combustion,1992.pp.205-212.
[24] 董能瑞,”管口火焰穩定性之研究”碩士論文91學年度2003.
[25] H.M.Altay.,S.Park.,D.Wu.,D.Wee.,A.M.Annaswamy.,A.F.Ghoniem.,”Modeling the dynamic response of a laminar perforated-plate stabilized flame,”Proceeding of the Combustion Institute 32(2009) 1359-1366.
[26] Mallard,E and Le Chatelier,H.,Recherches experimentelles et theoriques sur la combustion desmelanges gazeux explosifs,Ann.Mines,8Ser.IV,pp.274-568,1883.
[27] Uberoi,M.S.,Flow Field of a Flame in a Channel,The Physics of Fluids,Vol.2,No.1,pp.72-78,1959.
[28] Ball,G.A.,Combustion Aerodynamics—A Study of a Two-Dimensional Flame,Harvard University,Department of Engineering Science and Applyied Physics,1951.
[29] Zel'dovich,Y.B.,Istratov,A.G.,Kidin,N.I. and Librovich,V.B.,Flame Propagation in Tubes:Hydrodynamics and Stability, Combust. Sci. Technol., Vol.24,pp.1-13,1980.
[30] S.T Lee and J.S T'ien,”A numerical analysis of flame flashback in a premixed laminar system,”Combustion and Flame 48(1982):273-285
[31] S.T Lee and C.H. Tsai,”Numerical investigation of steady laminar flame propagation in a circular tube,”Combustion and Flame 99 (1994):484-490.
[32] C.L.Hackert,J.L.Ellzey and O.A.Ezekoye,”Effect of thermal boundry conditions on flame shape and quenching ducts,”Combust Flame 112(1998):73-84.
[33] Z.W.Li,S.K.Xhou,X.Shu,H.Xue and W.M.Yang,” Characteristics of premixed flame in microcombustors with different diameters,”Appliced Thermal Engineering 25 (2005):271-281.
[34] 許聖彥和李石頓,”管壁對管內火焰傳播及形狀之影響”,第二十屆機械工程研討會論文集,國科會計畫編號:NSC 90-2212-E-002-208.
[35] D.GNorton and D.G Vlachos,”Combustion characteristics and flame stability at the microscale:a CFD study of premixed methane/air mixtures,”Chemical Engineering Science 58(2003)4871-4882.
[36] Tsai,Chien-Hsiung. "The asymmetric behavior of steady laminar flame propagation in ducts." Combustion Science and Technology 180.3 (2008): 533- 545.
[37] A.Uppal,W.H, Ray and A.B.Poore,”on the dynamic behavior of continuous sturred tank reactors,”Chemical Engineering Science 29 (1974): 967-985.
[38] A.Uppal,W.H, Ray and A.B.Poore.”The classification of the dynamic behavior of continuous stirred tank reactors : Influence of reactor residence time,:Chemical Engineering Science 31(1976):205-214.
[39] P.Gary and S.KScott,Chemical oscillations and instabilities,nonliner chemical kinetics,Clarendon Press,Oxford,1990.
[40] A.Linan and F.A. Williams,Fundamental aspect of combustion,Oxdord University Press,New York,1993.
[41] K.Maruta,T.Koichi,J.Ahn,K.Borer,L.Sitzki,P.Rooney,and O.Deutschmann,”Extinction limits of catalytic combustion in microchannels,”
The (international) Symposium on Combustion,Sapporo,Japen,the Combustion Institute,2002.
[42] D.G.Norton,E.D.Wetzel and D.G. Vlachos,”Fabrication of single channel catalytic microburners:Effect of confinement on the oxidation of hydrogen/air mixtures,”Industrial and Engineering Chemistry Research 43:4833-4840.
[43] A.C Eckbreth,Laser diagnostics for combustion temperature and species,Abacus Press,Kent,United Kingdom.
[44] M.J McNenly, M.A. Gallis and I.D. Boyd,”Slip model performance for micro-scale gas flows,”Microscale Heat Transfer,AIAA,2003
[45] H.P.Kavehpour,M.Faghri and Y.Asako,”Effect of compressibility and rarefaction on gaseous flows in microchannels,”Numerical Heat Transfer Part A 32 (1997):677-696.
[46] N.Shankar and N.Glumac,”Experimental investigations into the effect of temperature slip on catalytic combustion,”Eastern States Section Meeting of the Combustion Institule, Pennsylvania State University.
[47] Bo Xu and Yiguang Ju,”Concentration slip and its impact on heterogeneous combustion in a micro scale chemical reactor,”Chemical Engineering Science 60(2005):3361-3572.
[48] K.S.Kedia.,H.M.Altay.,A.F.Ghoniem,”Impact of wall interaction on premixed flame dynamics and transfer function characteristics,”Proceedings of the Combustion” Institute 33 (2011)1113-1120.
[49] J.daou.,M.Matalon.,”Influent of Conductive Heat-Losses on the Propagation of Premixed Flames in Channels.”The Combustion Institute (2002)321-339.
[50] Jian Jiao.,”Numerical Analysis of the Catalytic Combustion of Premixed Methane/Air Mixture in Microtubes ,”Chem.Eng.Techol.2008,31No.9,1342-1349.
[51] M. D.Smooke,V.Giovangigli”Formulation of the premixed and Nonpremixed Test Problems,”Reducced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames,1-28.
[52] Andrews.G.E.,and Bradley,D.,”The Burning Velocity of Methane-Air Mixtures,”Combustion and Flame,19:275-288(1972).
[53] ANSYS FLUENT 14,Lebanon,N.H.,2011.
[54] 許煒傑,”微管道內的催化燃燒,”碩士論文93學年度2005.
[55] 陳嘉凱,”微小流道內火焰點燃/熄滅的傳播行為研究,”碩士論文102學年度2014.
[56] 台灣電力公司全球資訊網站
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code