Responsive image
博碩士論文 etd-0727114-100241 詳細資訊
Title page for etd-0727114-100241
論文名稱
Title
使用無探針工具於銅板摩擦攪拌銲接之接合特性的研究
Studies on the Friction Stir Welding of Copper Sheets Joint Characteristics with Pinless Tool
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-28
繳交日期
Date of Submission
2014-08-27
關鍵字
Keywords
接合強度、銲道下陷深度、助銲劑、銅板、摩擦攪拌銲接
joint strength, depression depth, flux, copper sheet, friction stir welding
統計
Statistics
本論文已被瀏覽 5658 次,被下載 31
The thesis/dissertation has been browsed 5658 times, has been downloaded 31 times.
中文摘要
本研究使用高轉速且定負荷之摩擦攪拌銲接設備,以直徑6 mm之無探針高速鋼銲接工具對銅板進行摩擦攪拌搭接。探討定點銲接之銲接時間、主軸轉速與正向負荷對銲點之下陷深度與試片表面溫度之影響。由定點銲接之時間效應得知,主軸轉速21000 rpm、正向負荷350 N與銲接時間20秒條件下,銲點下陷深度為0.05 mm,銲點外觀良好。
由定點銲接結果選擇在主軸轉速21000 rpm與預熱時間20秒條件下,探討正向負荷與進給速度對銲道下陷深度與試片表面溫度之影響。在正向負荷400 N與進給速度1.5 mm/s條件下,銲道下陷深度為0.05 mm,銲道外觀良好。
  另外在接合面含助銲劑之情況下,探討助銲劑對銅板接合強度之影響。在主軸轉速21000 rpm、正向負荷450 N與進給速度1.5 mm/s條件下,接合面添加助銲劑相較於無助銲劑之實驗組,接合強度最高可提升約4.3倍。
  由進給銲接之接合強度結果,選取銲道下陷深度較小以及接合強度較佳之銲接參數微調後,作為T型銅板銲接之操作條件,即在主軸轉速21000 rpm、正向負荷350 N、進給速度2.5 mm/s條件下,成功完成T型銅板銲接。
Abstract
In this study, friction stir lap welding (FSLW) of copper sheet is conducted at high rotating speeds with constant loads. Using a pinless tool made of high speed steel (HSS) with 6 mm diameter. Effects of welding time, rotating speed, and normal load on the depression depth and the interface temperature between the tool and the copper sheet are investigated for the friction spot welding. Results show that the appearance of the weld is smooth with the depression depth of 0.05 mm at the rotating speed of 21000 rpm, the normal load of 350 N, and the welding time of 20 seconds.
  For the FSLW, effects of normal load and feeding speed on the depression depth and the temperature of specimen surface are investigated at the rotating speed of 21000 rpm with preheat time of 20 seconds after the friction spot welding trials. The appearance of the weld is smooth with the depression depth of 0.05 mm at the normal load of 400 N, and the feeding speed of 1.5 mm/s.
  Moreover, effect of flux added on the interface between copper sheets on the joint strength is investigated. Results show that the shear strength for the cases adding flux is about 4.3 times as strong as that without flux at the rotating speed of 21000 rpm, the normal of 450 N, and the feeding speed of 1.5 mm/s.
  After the experimental trials, the operation condition is selected, so that its depression depth is smaller and its joint strength is higher. The T joint of copper sheets is successfully welded at the rotating speed of 21000 rpm, the normal load of 350 N, and the feeding speed of 2.5 mm/s.
目次 Table of Contents
誌 謝 ii
摘 要 iii
Abstract iv
目 錄 v
圖 次 vii
表 次 x
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.2.1探針工具 2
1.2.2無探針工具 4
1.2.3內嵌料工具 7
1.2.4銅之摩擦攪拌銲接特性 8
1.3研究目的 10
第二章 實驗設備與實驗方法 13
2.1 實驗設備 13
2.1.1 高速主軸模組 14
2.1.2 進給模組 14
2.1.3 氣壓模組 15
2.2 銲接試片與銲接工具 17
2.2.1 銅銲接試片材料特性 17
2.2.2 銅銲接試片幾何形狀 17
2.2.3銲接工具材料特性 18
2.2.4銲接工具幾何形狀 18
2.3 實驗治具材料與設計 19
2.4 助銲劑之選用與成分 21
2.5 實驗方法 21
2.5.1 實驗參數規劃 21
2.5.2 銲接位置 23
2.5.3 實驗前處理 24
2.5.4 實驗步驟 25
2.6銲接過程之表面溫度量測 28
2.7 銲道下陷深度量測 29
2.8 剪力強度試驗 29
2.9 實驗流程 31
第三章 結果與討論 32
3.1 定點銲接實驗 32
3.1.1 定點銲接之時間效應 33
3.1.2 定點銲接之轉速與負荷效應 34
3.1.3 主軸轉速與正向負荷對試片表面溫度之影響 40
3.2 進給銲接 41
3.2.1 進給銲接之主軸轉速與預熱時間 42
3.2.2 正向負荷與進給速度效應 43
3.2.3 正向負荷與進給速度對試片表面溫度之影響 51
3.3 接合面添加助銲劑之定點銲接 52
3.3.1 添加助銲劑之接合面觀察 53
3.3.2 接合面含助銲劑定點銲接之接合強度試驗 60
3.4 搭接接合面添加助銲劑之進給銲接 61
3.4.1 添加助銲劑之接合面觀察 63
3.4.2 接合面含助銲劑進給銲接之接合強度試驗 68
3.5 T型銅板銲接 70
3.5.1 T型搭接治具與銲接參數 70
3.5.2 T型銲道之接合面觀察與接合強度 72
第四章 結論與未來展望 77
4.1 結論 77
4.2 未來展望 78
參考文獻 79
參考文獻 References
[1] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith and C. J. Drawes, “Friction stir butt welding”, G B Patent Application No. 9125978.8, Dec. 1991; S.S. Patent No. 5460317, 1995.

[2] O. T. Midling, E. J. Morley and A. Sandvik, “Friction stir welding”, World Intellectual Property Organization Patent Application No. 95907888.2, 1995.R.

[3] R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing”, Materials Science and Engineering Vol. 50 (2005) 1–78.

[4] W. M. Thomas and E. D. Nicholas, “Friction stir welding for the transportation Industries”, Materials and Design Vol. 18 (1997) 269–273.

[5] M. R. Johnson, “Friction stir welding takes off at boeing”, Welding Journal Vol. 78 (1999) 35–39.

[6] S. W. Williams, “Welding of airframes using friction stir”, Air and Space Europe Vol. 3 (2001) 64–66.

[7] D. A. Wang, C. W. Chao, P. C. Lin and J. Y. Uan, “Mechanical characterization of friction stir spot microwelds”, Journal of Materials Processing Technology Vol. 210 (2010) 1942–1948.

[8] T. Nishihara and Y. Nagasaka, “Development of micro-FSW”, Japan Science and Technology Agency Vol. 11 (2003) 327–328.

[9] A. Scialpi, L. A. C. De Filippis, P. Cuomo and P. Di Summa, “Micro friction stir welding of 2024-6082 aluminium alloys”, Welding International Vol. 21 (2008) 16–22.

[10] K. Aota and K. Ikeuchi, “Development of friction stir spot welding using rotating tool without probe and its application to low-carbon steel plates”, Welding International Vol. 23 (2009) 572–580.

[11] Y. Tozaki, Y. Uematsu, and K. Tokaji, “A newly developed tool without probe for friction stir spot welding and its performance”, Journal of Materials Processing Technology Vol. 210 (2010) 844–851.

[12] L. Zhang, S. Ji, G. Luan, C. Dong and L. Fu, ”Friction stir welding of Al alloy thin plate by rotational tool without pin”, Journal of Materials Science and Technology. Vol. 27 (2011) 647–652.

[13] D. Bakavos, Y. Chen, L. Babout, and P. Prangnell, “Material interactions in a novel pinless tool approach to friction stir spot welding thin aluminum sheet”, Metallurgical and Materials Transactions A Vol. 42 (2011) 1266–1282.

[14] Y. C. Chiou, C. T. Liu, and R. T. Lee, “A pinless embedded tool used in FSSW and FSW of aluminum alloy”, Journal of Materials Processing Technology Vol. 213 (2013) 1818–1824.

[15] H. Lipowsky and E. Arpaci, “Copper in the automotive industry”, Wiley Interscience (2007), 1–11

[16] H. Khodaverdizadeh, A. Mahmoudi, A. Heidarzadeh and E. Nazari, “Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints”, Materials & Design Vol. 35 (2012) 330–334.

[17] Y.F. Sun and H. Fujii, “Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper”, Materials Science and Engineering: A Vol. 527 (2010) 6879–6886.

[18] J. W. Lin, H. C. Chang and M. H. Wu, “Comparison of mechanical properties of pure copper welded using friction stir welding and tungsten inert gas welding”, Journal of Manufacturing Processes Vol. 16 (2014) 296–304.

[19] K. Nakata, “Friction stir welding of copper and copper alloys”, Welding International Vol. 19 (2005) 929–933.

[20] S. Kalpakjian and S. R. Schmid, “Manufacturing processes engineering materials”, Pearson (2008) 772–780.

[21] 蘇貴福, “新材料的接合技術”, 全華圖書股份有限公司 (1992), 109–111.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code