Responsive image
博碩士論文 etd-0727114-111001 詳細資訊
Title page for etd-0727114-111001
論文名稱
Title
預混火焰在階梯管內之火焰行為分析
The Analysis of Premixed-Flame Behaviors in Stepped Tubes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-08-12
繳交日期
Date of Submission
2014-08-27
關鍵字
Keywords
火焰穩定極限、階梯突擴管、預混火焰、非對稱性
Stepped tube, Asymmetric, Premixed flame, Flame stability limits
統計
Statistics
本論文已被瀏覽 5694 次,被下載 56
The thesis/dissertation has been browsed 5694 times, has been downloaded 56 times.
中文摘要
本研究以數值方法探討二維穩態預混火焰在一階突擴階梯管內的火焰行為及火焰穩定極限。文中使用完整的納威爾-史托克方程式和簡化的甲烷四步驟反應模擬化學反應。在入口流場模式為Poiseuille速度分佈及等溫壁條件下觀察並分析預混層流火焰在突擴階梯管中穩定存在。參數探討平均入口速度、預混氣體當量比、管徑擴張比和壁溫對於再附著點長度、火焰位置、火焰形狀機制、氣體莫耳分率分佈、火焰穩定極限的影響。
緊鄰階梯突擴處後方所形成的滯流區中的渦流,會劇烈影響流場並直接改變燃燒反應機制及火焰形狀,而火焰位置也會間接影響流場流動分佈。本文研究了三種管徑擴張比(分別為1.67、2.5和5),探討不同的入口流速下,涵蓋在計算域內所有可能的火焰位置。當ER=5時,研究發現有三種火焰形狀機制,分別是蕈狀火焰、鬱金香型火焰和非對稱-鬱金香型火焰;當ER=2.5時,則發現有四種火焰形狀機制,分別為蕈狀火焰、鬱金香型火焰、非對稱-鬱金香型火焰和傾斜型火焰;最後當ER=1.67時,發現有五種火焰形狀機制,分別為微弱火焰、蕈狀火焰、鬱金香型火焰、非對稱-鬱金香型火焰和傾斜型火焰。
研究結果顯示在等溫冷壁、低當量比條件下,火焰穩定極限範圍縮小,火焰形狀機制種類減少,火焰位置移動幅度較大; 反之,在等溫熱壁、高當量比條件下,火焰穩定極限範圍增廣,火焰形狀機制種類增加,火焰位置移動幅度較小。
Abstract
Flame behaviors and stability limits of the two-dimensional steady premixed flame in one-step tubes are investigated numerically in this study. In this study, the complete Navier-Stokes equations are used in the mathematical formulation and the flame chemistry is modeled by a simplified four-step reduced reaction mechanism of methane-air mixture. The steady premixed flames in the one-step tubes are studied. Parametric investigations are carried out to understand the effect of average inflow velocity, mixture equivalence ratio, expansion ratio of the tube and wall-temperature on reattachment length, flame position, flame shape, distribution of gas mole fraction and flame stability limits.
It was observed that the recirculation zone, created due to sudden flow expansion, at the backward step significantly modifies the flow velocity profile and directly changes the combustion reaction mechanism, however the flame position will indirectly affect the distribution of the flow field. The inflow velocity is varied so as to cover all possible flame positions inside the domain. Three expansion ratio, 1.67, 2.5, 5, have been considered. Three flame behaviors have been observed when ER is 5, which are mushroom-shaped flame, tulip-shaped flame and asymmetrical tulip-shaped flame. Four flame behaviors have been observed when ER is 2.5, which are mushroom-shaped flame, tulip-shaped flame, asymmetrical tulip-shaped flame and slant-shaped flame. Five flame behaviors have been observed when ER is 1.67, which are weak flame, mushroom-shaped flame, tulip-shaped flame, asymmetrical tulip-shaped flame and slant-shaped flame.
Results show that the lower the wall-temperature and the mixture equivalence ratio, the smaller the flame stability limits range are, the fewer the types of flame shape are and the larger the increments of flame displacement become, and vice versa.
目次 Table of Contents
致謝 ii
摘要 iii
Abstract iv
總目錄 vi
圖目錄 ix
表目錄 xiii
符號說明 xiv
第一章 前言 1
1.1 研究動機 1
1.2 文獻回顧 5
1.3 研究目的 12
第二章 數學模型和求解方法 22
2.1 模型假設與統御方程式 22
2.2物理化學性質 24
2.3 化學反應機制 28
2.4 邊界條件 30
2.5求解方法和收斂標準 30
第三章 結果與討論 33
3.1 各種火焰形狀類型介紹 34
3.1.1 微弱火焰(weak flame) 35
3.1.2 蕈狀火焰(mushroom-shaped flame) 37
3.1.3 鬱金香型火焰(tulip-shaped flame) 38
3.1.4 非對稱-鬱金香型火焰(asymmetrical tulip-shaped flame) 40
3.1.5 傾斜型火焰(slant-shaped flame) 42
3.1.6 參數對火焰形狀的影響 44
3.2 當量比Ф對火焰燃燒機制的影響 45
3.2.1 當量比Ф對火焰穩定極限的影響 45
3.2.2當量比Ф對火焰形狀機制的影響 48
3.2.3當量比Ф對火焰位置的影響 50
3.3 ER對火焰及流場之間交互作用的影響 51
3.3.1 ER對無反應徑向流速分布在不同軸向位置之影響 52
3.3.2 ER對Xr分布的影響 54
3.4入口速度Ua對火焰燃燒機制的影響 60
3.4.1 入口速度Ua對火焰位置的影響 60
3.4.2入口速度Ua對火焰形狀機制的影響 62
3.4.3入口速度Ua對火焰形狀機制和火焰位置的影響 64
3.4.4入口速度Ua對中間產物一氧化碳的影響 66
3.5等溫熱壁(Tw3=600K)對火焰燃燒機制的影響 68
3.5.1等溫熱壁(Tw3=600K)對火焰穩定極限的影響 68
3.5.2等溫熱壁(Tw3=600K)時當量比Ф對火焰形狀機制的影響 71
3.5.3等溫熱壁(Tw3=600K)時當量比Ф對火焰位置的影響 72
3.5.4等溫熱壁(Tw3=600K)對火焰及流場之間交互作用的影響 73
3.5.5 等溫熱壁(Tw3=600K)條件下不同入口速度Ua對火焰燃燒機制的影響 78
3.5.6等溫熱壁(Tw3=600K)條件下Ua對一氧化碳的影響 82
第四章 結論與展望 84
參考文獻 86
參考文獻 References
[1]許聖彥, “管壁熱傳對預混火焰的影響,” 國立台灣大學機械工程學研 究所碩士論文, (2002).
[2]陳嘉凱, “微小流道內火焰點燃/熄滅的傳播行為研究,” 國立中山大學機械與機電工程學系碩士論文, (2014).
[3]Yiguang Ju and Kaoru Maruta, “Microscale combustion: Technology development and fundamental research.” Progress in Energy and Combustion Science 37 (2011):669-715.
[4]Stephen R. Turns, “An Introduction to Combustion Concepts and Applications.” Chapter 8, second edition, McGraw. Hill, 2000.
[5]Kaoru Maruta, Takuya Kataoka, Nam Il Kima, Sergey Minaev, Roman Fursenko, “Characteristics of combustion in a narrow channel with a temperature gradient.” Proceedings of the Combustion Institute 30 (2005) 2429–2436.
[6]Yosuke Tsuboi a, Takeshi Yokomori b, Kaoru Maruta, “Lower limit of weak flame in a heated channel.” Proceedings of the Combustion Institute 32 (2009) 3075–3081.
[7]Ju Y, Xu B. “Effects of channel width and Lewis number on the multiple flame regimes and propagation limits in mesoscale.” Combustion Science and Technology 2006: 178(10-11):1723-1753.
[8]Bhupendra Khandelwal, Gur Partap Singh Sahota and Sudarshan Kumar, “Investigations into the flame stability limits in a backward step micro scale combustor with premixed methane–air mixtures.” J. Micromech. Microeng. 20 (2010) 095030 (8pp).
[9]Anil A. Deshpande, Sudarshan Kumar, “On the formation of spinning flames and combustion completeness for premixed fueleair mixtures in stepped tube microcombustors.” Applied Thermal Engineering 51 (2013) 91-101.
[10] W.M. Yang , S.K. Chou , C. Shu , Z.W. Li , H. Xue, “Combustion in micro-cylindrical combustors with and without a backward facing step.” Applied Thermal Engineering 22 (2002) 1777–1787.
[11] J. Li , S.K. Chou , G. Huang , W.M. Yang , Z.W. Li, “Study on premixed combustion in cylindrical micro combustors: Transient flame behavior and wall heat flux.” Experimental Thermal and Fluid Science 33 (2009) 764–773.
[12] J. Li , S.K. Chou , Z.W. Li , W.M. Yang, “Characterization of wall temperature and radiation power through cylindrical dump micro-combustors.” Combustion and Flame 156 (2009) 1587–1593.
[13] D. G. Norton, D. G. Vlachos, “Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures.” Chemical Engineering Science 58 (2003) 4871 – 4882.
[14] G. Pizza, C. E. Frouzakis, J. Mantzaras, A. G. Tomboulides, K. Boulouchos, “Premixed Flame Dynamics in Planar Microchannels.” THIRD EUROPEAN COMBUSTION MEETING ECM 2007.
[15] G. PIZZA, C. E. FROUZAKIS†, J. MANTZARAS,A. G. TOMBOULIDES AND K. BOULOUCHOS, “Three-dimensional simulations of premixed hydrogen/air flames in microtubes.” J. Fluid Mech. (2010), vol. 658, pp. 463–491.
[16] Chien-Hsiung Tsai, “THE ASYMMETRIC BEHAVIOR OF STEADY LAMINAR FLAME PROPAGATION IN DUCTS.” Combust. Sci. and Tech., 180: 533–545, 2008.
[17] M. J. RWON, B. J. LEE, and S. H. CHUNG, “An Observation of Near-Planar Spinning Premixed Flames in a Sudden Expansion Tube.” COMBUSTIONAND FLAME 105: 180-188 (1996).
[18] Bo Xu , Yiguang Ju, “Experimental study of spinning combustion in a mesoscale divergent channel.” Proceedings of the Combustion Institute 31 (2007) 3285–3292.
[19] Subhadeep Chakraborty, Achintya Mukhopadhyay , Swarnendu Sen, “Interaction of Lewis number and heat loss effects for a laminar premixed flame propagating in a channel.” International Journal of Thermal Sciences 47 (2008) 84–92.
[20] K.B. Kim, O.C. Kwon, “Studies on a two-staged micro-combustor for a micro-reformer integrated with a micro-evaporator.” Journal of Power Sources 182 (2008) 609–615.
[21] Yong Fan , Yuji Suzuki, Nobuhide Kasagi, “Experimental study of micro-scale premixed flame in quartz channels.” Proceedings of the Combustion Institute 32 (2009) 3083–3090.
[22] Valiev Damir, “The role of Landau-Darrieus instability in flame dynamics and deflagration-to-detonation transition.” 2007-04-20, Konferensrum K 408, Materialvetenskap, KTH, Brinellvägen 23, Stockholm, 14:00.
[23]C.L.Hackert., J.L.Ellzey., and O.A. Ezekoye., “Effects of Thermal Boundary Conditions on Flame Shape and Quenching in Ducts” Combustion and Flame 112:73-84(1998).
[24] J.H. Nie, B.F. Armaly, “Three-dimensional convective flow adjacent to backward-facing step - effects of step height.” International Journal of Heat and Mass Transfer 45 (2002) 2431–2438.
[25] Hiroshi Iwai, Kazuyoshi Nakabe, Kenjiro Suzuki, “Flow and heat transfer characteristics of backward-facing step laminar flow in a rectangular duct.” International Journal of Heat and Mass Transfer 43 (2000) 457-471.
[26] B. F. ARMALY, F. DURST, J. C. F. PEREIRA AND B. SCHONUNG, “Experimental and theoretical investigation of backward-facing step flow.” J . Fluid Mech. (1983), vol. 127, p p . 473-496.
[27]孫金華,王青松,紀杰等, “火焰精細結構及其傳播動力學.” 第三章, 科學出版社, 2010.
[28] Osamu Kurata, “X-shaped flames consisting of rotating slant flamelets.” Combustion and Flame 152 (2008) 206–217.
[29] H. Murat Altay, Kushal S. Kedia, Raymond L. Speth. And Ahmed F. Ghoniem, “Two-dimensional simulations of steady perforated-plate stabilized premixed flames,” Combustion Theory and Modelling Vol. 14, No. 1, 2010, 125–154.
[30] F. Boudy, D. Durox, T. Schuller , S. Candel, “Nonlinear mode triggering in a multiple flame combustor,” Proceedings of the Combustion Institute 33 (2011) 1121–1128.
[31] S. V. Patankar, “Numerical Heat Transfer and Fluid Flow,” McGraw-Hill, New york,1980.
[32]Smooke, M.D., Giovangigli, V., “Formulation of the Premixed and Nonpremixed Test Problems.” Chaper 1, Lecture Notes in Physics, Springer-Verlag, 384: 1-28, (1990).
[33]Norbert Peters, “Reducing Mechanisms.” Chaper 3, Lecture Notes in Physics, Springer-Verlag, 384: 48-67, (1990).
[34]ANSYS FLUENT 14, Lebanon, N.H., 2012.
[35]Svehla, Roger A., “Transport Coefficients for the NASA Lewis Chemical Equilibrium Program, ” NASA Technical Memorandum 4647.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code