Responsive image
博碩士論文 etd-0727114-154544 詳細資訊
Title page for etd-0727114-154544
論文名稱
Title
單晶與多晶金屬於溫度效應下其摩擦特性之分子動力學模擬分析
The Temperature Effects of Friction Properties Analysis in Single Crystalline and Polycrystalline Metal by Molecular Dynamics Simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
156
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-11
繳交日期
Date of Submission
2014-08-27
關鍵字
Keywords
分子動力學、動摩擦係數、單晶結構、多晶結構、溫度效應
molecular dynamics, temperature effects, polycrystalline structure, coefficient of kinetic friction, single crystal structure
統計
Statistics
本論文已被瀏覽 5769 次,被下載 0
The thesis/dissertation has been browsed 5769 times, has been downloaded 0 times.
中文摘要
利用有限元素法模擬分析來解決工程問題之技術已發展甚久,且有許多非常成熟的套裝軟體供使用者使用,如ANSYS、MSC.Marc等等,但在使用中往往都會有材料性質無法完全找齊之問題,特別是與溫度相關之性質,使模擬結果無法更加貼近真實情況。本研究主要目的為透過LAMMPS分子動力學模擬軟體來模擬摩擦實驗,藉此模擬得到高溫之動摩擦係數。本研究不僅成功建立起一套完整之指令供使用者使用,且可以依使用者所需求改變金屬類別以及模擬溫度,即可計算出任意兩金屬在任意溫度下之摩擦係數。經比較模擬與文獻提供之常溫摩擦實驗結果所示,單晶模型之誤差為7.66 %、多晶模型之誤差為8.33 %。而本研究又以銅對銅之摩擦為例進行各種不同探針速度、刮痕深度以及模擬溫度對於摩擦特性影響之探討,其中不僅以單晶結構做為討論,還建立了往年鮮少數人討論的多晶結構模擬來加以描述實際材料之結構。
研究結果顯示,在刮痕深度為2.50 nm、模擬溫度為293.0 K以及探針速度從100.0 m/s增加至400.0 m/s時,單晶銅結構之摩擦係數由2.30下降至1.24;多晶銅結構之摩擦係數由1.86下降至1.44。在探針速度為100.0 m/s、模擬溫度為293.0 K以及刮痕深度從1.00 nm增加至2.50 nm時,單晶銅結構之摩擦係數由4.30下降至2.30;多晶銅結構之摩擦係數由2.25下降至1.86。在探針速度為100.0 m/s、刮痕深度為2.50 nm以及模擬溫度從293.0 K增加至1000.0 K時,單晶銅結構之摩擦係數由2.30下降至1.38;多晶銅結構之摩擦係數維持在1.77與1.90之間。
Abstract
The use of solving simulations using the finite element method has been developed over a long time, and mature software , such as ANSYS, MSC, Marc, and other packages, is available. Some of the software does not include enough material properties, and especially too few properties that are relate to temperature. Accordingly the results of simulations not close to the reality. The study uses the LAMMPS, which is software for simulating molecular dynamics, to simulate the experiments on the friction. The coefficient of the kinetic friction at high temperature is thus obtained. This work successfully developed a complete calculating package of coefficient of the kinetic friction. The user can change the metal and the temperature. Comparing experimental at room temperature in the literature with the results of the simulation yields a, single crystalline model error of 7.66% and a polycrystalline model error of 8.33%. This investigation discusses the effects of the frictional properties by copper on copper at various friction velocities, depth of ploughing and temperatures. In recent years, a few people have studied the polycrystalline model. In this work, not only a single crystalline model but also polycrystalline model is developed and utilized to describe the real structure of a material.
The results obtained herein yield a depth of ploughing of 2.50 nm, a simulated temperature of 293.0 K and an increase in tip velocity from 100.0 m/s to 400.0 m/s. The coefficient of kinetic friction of the single crystalline structure decreased from 2.30 to 1.24 and that of the polycrystalline structure decreased from 1.86 to 1.44. When the tip velocity is 100 m/s, temperature is 293.0 K and the depth of ploughing increased from 1.00 nm to 2.50 nm. The coefficient of kinetic friction of the single crystal structure decreased from 4.30 to 2.30 and that of the polycrystalline structure is decreased from 2.25 to 1.86. Finally, when the tip velocity is 100 m/s, the depth of ploughing is 2.50 nm and temperature increased from 293.0 K to 1000.0 K. The single crystal structure decreased from 2.30 to 1.38 and that of the polycrystalline structure is maintained between 1.77 to 1.90.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 研究目的 1
1.2 文獻回顧 2
1.2.1 摩擦歷史回顧 2
1.2.2 分子動力學歷史回顧 3
1.2.3 摩擦係數實驗歷史回顧 4
1.2.4 摩擦係數模擬歷史回顧 5
1.3 全文架構 7
第二章 基本理論 16
2.1 分子動力學之基本理論 16
2.1.1 勢能函數(Potential Energy Function) 16
2.1.2 系綜種類(Ensemble) 19
2.1.3 積分法 20
2.1.4 溫度修正之積分法 22
2.1.5 鄰近範圍 23
2.1.6 邊界條件 24
2.1.7 軟體介紹 25
2.2 摩擦係數之計算理論 29
2.3 隨機多晶結構製造理論 31
2.4 中心對稱軸參數 32
2.5 田口法(Taguchi Methods)介紹 32
第三章 指令使用方法與研究流程 45
3.1 基本假設 45
3.2 模擬流程 46
3.3 模擬設定 47
3.4 參數設定與收斂分析 50
第四章 結果與討論 62
4.1 模擬之驗證 62
4.2 摩擦係數與模擬溫度之關係討論 65
4.3 單晶結構之摩擦特性討論 66
4.3.1 單晶結構於不同摩擦速度下之摩擦特性影響 68
4.3.2 單晶結構於不同刮痕深度下之摩擦特性影響 71
4.3.3 單晶結構於不同模擬溫度下之摩擦特性影響 73
4.4 多晶結構之摩擦特性討論 76
4.4.1多晶結構於不同摩擦速度下之摩擦特性影響 79
4.4.2多晶結構於不同刮痕深度下之摩擦特性影響 81
4.4.3多晶結構於不同模擬溫度下之摩擦特性影響 83
第五章 結論與未來展望 122
5.1 結論 122
5.2 未來展望 123
參考文獻 125
附錄A 133
附錄B 135
附錄C 137
附錄D 139
參考文獻 References
[1] J. Greenwood, “A unified theory of surface roughness,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 393, pp. 133-157, 1984.
[2] Y. Mo, K. T. Turner, and I. Szlufarska, “Friction laws at the nanoscale,” Nature, vol. 457, pp. 1116-1119, 2009.
[3] 溫詩鑄、 黃平,摩擦學原理,清華大學出版社有限公司,2002。
[4] B. Bhushan, “Principles and applications of tribology,” ISBN: 0-471-59407-5 John Wiley and Sons, New York, 1999.
[5] D. C. Rapaport, The art of molecular dynamics simulation: Cambridge university press, 2004.
[6] B. Bhushan, Handbook of micro/nano tribology: CRC press, 1998.
[7] G. Amontons, “De la resistance causee dans les machines,” Histoire de l’Académie Royale des Sciences, vol. 1699, 1699.
[8] C. A. Coulomb, Théorie des machines simples, 1821.
[9] F. P. Bowden and D. Tabor, The friction and lubrication of solids vol. 1: Oxford university press, 1964.
[10] D. F. Moore, “The friction and lubrication of elastomers,” 1972.
[11] J. Goddard and H. Wilman, “A theory of friction and wear during the abrasion of metals,” Wear, vol. 5, pp. 114-135, 1962.
[12] S. Lafaye, C. Gauthier, and R. Schirrer, “Analysis of the apparent friction of polymeric surfaces,” Journal of materials science, vol. 41, pp. 6441-6452, 2006.
[13] S. Lafaye, C. Gauthier, and R. Schirrer, “The ploughing friction: analytical model with elastic recovery for a conical tip with a blunted spherical extremity,” Tribology Letters, vol. 21, pp. 95-99, 2006.
[14] S. Lafaye and M. Troyon, “On the friction behaviour in nanoscratch testing,” Wear, vol. 261, pp. 905-913, 2006.
[15] S. Lafaye, “True solution of the ploughing friction coefficient with elastic recovery in the case of a conical tip with a blunted spherical extremity,” Wear, vol. 264, pp. 550-554, 2008.
[16] S. Lafaye, C. Gauthier, and R. Schirrer, “Analyzing friction and scratch tests without in situ observation,” Wear, vol. 265, pp. 664-673, 2008.
[17] E. Schrödinger, “Quantisierung als eigenwertproblem,” Annalen der physik, vol. 385, pp. 437-490, 1926.
[18] M. Born and R. Oppenheimer, “Zur Quantentheorie der Molekeln,” Annalen der Physik, vol. 389, pp. 457-484, 1927.
[19] J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics,” The Journal of Chemical Physics, vol. 18, pp. 817-829, 1950.
[20] Z. Chen, P. Darancet, L. Wang, A. C. Crowther, Y. Gao, C. R. Dean, et al., “Physical Adsorption and Charge Transfer of Molecular Br2 on Graphene,” ACS nano, vol. 8, pp. 2943-2950, 2014.
[21] Y. Liu, M. B. Prigozhin, K. Schulten, and M. Gruebele, “Observation of complete pressure-jump protein refolding in molecular dynamics simulation and experiment,” Journal of the American Chemical Society, 2014.
[22] C. M. Rouleau, C.-Y. Shih, C. Wu, L. V. Zhigilei, A. A. Puretzky, and D. B. Geohegan, “Nanoparticle generation and transport resulting from femtosecond laser ablation of ultrathin metal films: Time-resolved measurements and molecular dynamics simulations,” Applied Physics Letters 104, 2014, 193106.
[23] A. Kalinichev, “Molecular Structure and Dynamics of Nano-Confined Water: Computer Simulations of Aqueous Species in Clay, Cement, and Polymer Membranes,” in Transport and Reactivity of Solutions in Confined Hydrosystems, L. Mercury, N. Tas, and M. Zilberbrand, Eds., ed: Springer Netherlands, 2014, pp. 103-115.
[24] J. C. Mobarec, D. Wolf, I. B. Bischofs, and P. Kolb, “Computational modeling, docking and molecular dynamics of the transcriptional activator ComA bound to a newly-identified functional DNA binding site,” Journal of Cheminformatics, vol. 6, 2014.
[25] R. Burton, J. Russel, and P. Ku, “Metallic friction at cryogenic temperature,” Wear, vol. 5, pp. 60-68, 1962.
[26] Y. Tsuya, “The anisotropy of the coefficient of friction and plastic deformation in copper single crystals,” Wear, vol. 14, pp. 309-322, 1969.
[27] C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang, “Atomic-scale friction of a tungsten tip on a graphite surface,” in Scanning Tunneling Microscopy, ed: Springer, 1987, pp. 226-229.
[28] B. Bhushan and A. V. Kulkarni, “Effect of normal load on microscale friction measurements,” Thin Solid Films, vol. 278, pp. 49-56, 1996.
[29] B. Bhushan and X. Li, “Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices,” Journal of Materials Research, vol. 12, pp. 54-63, 1997.
[30] B. Bhushan and S. Sundararajan, “Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy,” Acta materialia, vol. 46, pp. 3793-3804, 1998.
[31] R. Komanduri, N. Chandrasekaran, and L. Raff, “Molecular dynamics simulation of atomic-scale friction,” Physical Review B, vol. 61, p. 14007, 2000.
[32] R. Komanduri, N. Chandrasekaran, and L. Raff, “MD simulation of indentation and scratching of single crystal aluminum,” Wear, vol. 240, pp. 113-143, 2000.
[33] T.-H. Fang and C.-I. Weng, “Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale,” Nanotechnology, vol. 11, p. 148, 2000.
[34] 洪明鈞,以分子動力學研究奈米摩擦,碩士論文,國立成功大學,機械工程學系,台南市,2001。
[35] Y. Ye, R. Biswas, J. Morris, A. Bastawros, and A. Chandra, “Molecular dynamics simulation of nanoscale machining of copper,” Nanotechnology, vol. 14, p. 390, 2003.
[36] Q. Pei, C. Lu, F. Fang, and H. Wu, “Nanometric cutting of copper: a molecular dynamics study,” Computational Materials Science, vol. 37, pp. 434-441, 2006.
[37] J. Zhang, T. Sun, Y. Yan, Y. Liang, and S. Dong, “Molecular dynamics study of groove fabrication process using AFM-based nanometric cutting technique,” Applied Physics A, vol. 94, pp. 593-600, 2009.
[38] P.-z. Zhu, Y.-z. Hu, T.-b. Ma, and H. Wang, “Study of AFM-based nanometric cutting process using molecular dynamics,” Applied Surface Science, vol. 256, pp. 7160-7165, 2010.
[39] M. Solar, H. Meyer, C. Gauthier, O. Benzerara, R. Schirrer, and J. Baschnagel, “Molecular dynamics simulations of the scratch test on linear amorphous polymer surfaces: A study of the local friction coefficient,” Wear, vol. 271, pp. 2751-2758, 2011.
[40] J. Shi and M. Verma, “Comparing atomistic machining of monocrystalline and polycrystalline copper structures,” Materials and Manufacturing Processes, vol. 26, pp. 1004-1010, 2011.
[41] C. Ji, J. Shi, Z. Liu, and Y. Wang, “Comparison of tool–chip stress distributions in nano-machining of monocrystalline silicon and copper,” International Journal of Mechanical Sciences, vol. 77, pp. 30-39, 2013.
[42] K. Sun, L. Fang, Z. Yan, and J. Sun, “Atomistic scale tribological behaviors in nano-grained and single crystal copper systems,” Wear, vol. 303, pp. 191-201, 2013.
[43] X. J. Yang and X. J. Yang, “Molecular Dynamics Simulations of Sliding Friction of Rigid Sphere with Single Crystal Copper Surface,” Applied Mechanics and Materials, vol. 345, pp. 167-171, 2013.
[44] M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Physical Review B, vol. 29, p. 6443, 1984.
[45] 陳權,平行分子動力學應用於個人電腦叢集系統分析與效能研究,博士論文,國立成功大學,工程科學系,台南市,2009。
[46] 洪榮泰,分子動力學模擬於大馬士革製程中銅沉積與微結構之研究,博士論文,臺灣大學,機械工程學系,臺北市,2006。
[47] H. N. Wadley, X. Zhou, and R. A. Johnson, “Atomic assembly of giant magnetoresistive multilayers,” in MRS Proceedings, 2001.
[48] A. Modinos, “Thermodynamics and Statistical Mechanics,” in From Aristotle to Schrödinger, ed: Springer International Publishing, 2014, pp. 147-187.
[49] 文玉華、朱如曾、周富信、王崇愚,分子動力學模擬的主要技術,力學進展,vol. 33,pp. 65-73,2003。
[50] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, “A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters,” The Journal of Chemical Physics, vol. 76, pp. 637-649, 1982.
[51] LAMMPS Users Manual , S. N. Laboratiories, 2013.
[52] S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” The Journal of Chemical Physics, vol. 81, pp. 511-519, 1984.
[53] W. G. Hoover, “Canonical dynamics: equilibrium phase-space distributions,” Physical Review A, vol. 31, p. 1695, 1985.
[54] 翁盟雄,以分子動力學研究金奈米線之動態行為,碩士論文,國立中山大學,機械與機電工程學系,高雄市,2006。
[55] L. Verlet, “Computer” experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Physical review, vol. 159, p. 98, 1967.
[56] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,” Modelling and Simulation in Materials Science and Engineering, vol. 18, p. 015012, 2010.
[57] “OriginPro,” http://www.originlab.com/,2014/6/25.
[58] 楊榮顯,工程材料學,全華科技圖書,1997。
[59] J. Schiøtz and K. W. Jacobsen, “A maximum in the strength of nanocrystalline copper,” Science, vol. 301, pp. 1357-1359, 2003.
[60] D. Chen, “Structural modeling of nanocrystalline materials,” Computational materials science, vol. 3, pp. 327-333, 1995.
[61] S. Traiviratana, “A molecular dynamics study of void initiation and growth in monocrystalline and nanocrystalline copper,” 2008.
[62] 袁林、敬鵬、劉豔華、徐振海、單德彬、郭斌,多晶銀納米線拉伸變形的分子動力學模擬研究,物理學報, vol. 63,pp. 16201-016201,2014。
[63] 胡莉莉、唐鵬,多晶鎢單軸拉伸模擬,中國科技論文在線,2013.
[64] “Polycrystalline software,” http://li.mit.edu/Archive/Graphics/A/utils.html, 2014/6/25.
[65] C. L. Kelchner, S. Plimpton, and J. Hamilton, “Dislocation nucleation and defect structure during surface indentation,” Physical Review B, vol. 58, p. 11085, 1998.
[66] 田玄一,田口統計解析法,五南圖書出版股份有限公司,2003。
[67] S. Banerjee, “Super-growth of CNTs based on ZrN for TSV application,” 2014.
[68] “Lattice constant table,” http://www.52souji.net/, 2014/6/22.
[69] “Copper information,” http://www.webelements.com/copper/, 2014/06/22.
[70] J. B. Adams, S. M. Foiles, and W. G. Wolfer, “Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method,” Journal Name: J. Mat. Res.; (United States); Journal Volume: 4:1, pp. Medium: X; Size: Pages: 102-112, 1989.
[71] A. M. Chowdhury, D. Nuruzzaman, A. Mia, and M. Rahaman, “Friction coefficient of different material pairs under different normal loads and sliding velocities,” Tribology in Industry, vol. 34, pp. 18-23, 2012.
[72] J.-J. Wu, “The jump-to-contact distance in atomic force microscopy measurement,” The Journal of Adhesion, vol. 86, pp. 1071-1085, 2010.
[73] 程東、嚴志軍、嚴立,單晶 Cu 表面黏-滑效應的分子動力學類比,金屬學報,vol. 42,pp. 1149-1152,2006。
[74] 韓雪英、王影,摩擦的產生機理與分類,東北電力大學學報,pp. 79-83,2010。
[75] H. Suzuki, Dislocations in Solids: Taylor & Francis, 1985.
[76] 劉小明、由小川、柳占立、莊茁,納米尺度摩擦過程的分子動力學類比, 金屬學報,vol. 44,pp. 1025-1030,2008。
[77] G. I. Taylor, “The mechanism of plastic deformation of crystals. Part I. Theoretical,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, pp. 362-387, 1934.
[78] A. Emge, S. Karthikeyan, H. Kim, and D. Rigney, “The effect of sliding velocity on the tribological behavior of copper,” Wear, vol. 263, pp. 614-618, 2007.
[79] R. Khordad, “Effect of temperature on the binding energy of excited states in a ridge quantum wire,” Physica E: Low-dimensional Systems and Nanostructures, vol. 41, pp. 543-547, 2009.
[80] A. Mocsy, P. Petreczky, and M. Strickland, “Quarkonia in the quark gluon plasma,” International Journal of Modern Physics A, vol. 28, 2013.
[81] D. R. Gaskell, Introduction to the Thermodynamics of Materials vol. 2: CRC Press, 2008.
[82] 潘金生、全建民、田民波,材料科學基礎,清華大學出版社,1998。
[83] 馮端,固體物理學大辭典,建宏出版社,1998。
[84] J. Gere and B. Goodno, Mechanics of Materials, SI Edition: Cengage Learning, 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.30.162
論文開放下載的時間是 校外不公開

Your IP address is 3.141.30.162
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code