Responsive image
博碩士論文 etd-0727115-160339 詳細資訊
Title page for etd-0727115-160339
論文名稱
Title
Cu2O/MgO超晶格之結構研究
Structural evolution of epitaxial Cu2O/MgO superlattices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-28
繳交日期
Date of Submission
2015-08-28
關鍵字
Keywords
氧化銅、超晶格、氧化鎂、氧化亞銅、磊晶
Superlattices, Cu2O, MgO, CuO, Epitaxy
統計
Statistics
本論文已被瀏覽 5716 次,被下載 700
The thesis/dissertation has been browsed 5716 times, has been downloaded 700 times.
中文摘要
本論文的實驗主題在於研究氧化亞銅(Cuprous Oxide, Cu2O)與氧化鎂 (Magnesium Oxide, MgO)所組成的超晶格(Superlattices)結構的成長參數與其結構的關係。實驗以磁控濺鍍法成長氧化亞銅與氧化鎂薄膜於C-面向(0001)的氧化鋁(Al2O3)基板上,研究發現氧化亞銅以及氧化鎂所組成的超晶格結構皆可成長出(111)-面取相的氧化亞銅與氧化鎂磊晶薄膜,但實驗結果顯示雖然樣品呈現出磊晶結構,但在高溫下成長的樣品,其層狀並非我們理想預期中平面式一層一層堆疊,而是形成顆粒狀,致使界面並不平整。因此為了使其呈理想的超晶格結構,我們降低成長溫度,從而避免材料本身在高溫成長時容易會呈現島狀結構的趨勢,藉由改變成長時的環境溫度以降低其原子在鍵結時的動能,使其層層堆疊的界面較為平整。實驗方法是利用X-ray繞射(XRD)分析,如: 2theta-omega,掠角XRD繞射和掠角X光反射率(XRR),分析樣品之晶相變化與其平整度的變化;利用掃描式電子顯微鏡(SEM)觀察在不同溫度下成長的樣品之表面形貌變化;利用穿透式電子顯微鏡(TEM)觀察樣品的分層結構平整度以及晶體之微米或奈米結構,藉以瞭解磊晶成長溫度對於超晶格結構之影響。
Abstract
This thesis investigates the epitaxial growth and structural characterizations of Cu2O/MgO superlattices, which consist of alternating layers of cuprous oxide and magnesium oxide epitaxial thin films. The superlattices were grown on c-oriented sapphire (Al2O3) substrates by sputtering at various temperatures under an optimized gas pressure of Ar:O2 mixtures. The intended layer-by-layer growth of superlattices of planar interfaces were not successful when grown at high temperature as the Cu2O films tended to grow in island forms. To entice the so-call layer-by-layer growth that supposedly would lead to planar surface or interfaces, the growth temperatures were dramatically decreased, albeit possibly at the sacrifice of some degree of crystalline perfection only achievable at high temperatures. Without losing the epitaxial nature of the superalttices, however, the adopted range of temperatures of the thin film deposition were somehow able to reduce the mobility of the deposited atoms, as represented by the suppressed island formation and realized smoother interfaces. In this work, high-resolution analytical x-ray diffractometry (XRD), such as 2theta-omega, or grazing angle (GIXRD) scans, and grazing angle X-ray reflectivity (XRR) measurements, were employed to characterize the epitaxial and interfacial nature of the superlattices, and scanning electron microscopy (SEM) was used to observe the surface morphology, while transmission electron microscopy (TEM) operated in high resolution mode, coupled with the electron diffraction pattern formation, was used to achieve atomic imaging and micro- and nanostructures characterizations of the samples. The effects of an initial MgO layer that was grown at high temperature and the overall dependence of the growth temperature are discussed based on the correlated findings.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 序論 1
1-1前言 1
1-2文獻回顧 2
1-2-1氧化亞銅(Cu2O)特性 2
1-2-2氧化亞銅(Cu2O)成長方式 3
1-2-3氧化鎂(MgO)特性 4
1-2-4氧化鎂(MgO)成長方式 5
1-3研究動機 7
第二章 實驗儀器及理論基礎 8
2-1濺鍍(sputtering)系統及原理 8
2-1-1濺鍍原理 8
2-2 X光繞射儀及原理 9
2-2-1 X-ray繞射儀簡介及掃描模式 9
2-2-2 2theta-omega(2θ-ω) 10
2-2-3 掠角入射法(GIXRD) 11
2-2-4 phi scan模式 12
2-2-5 極圖(pole figure) 12
2-2-6 rocking curve模式 13
2-2-7 X-ray reflectivity (XRR) 13
2-3掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 14
2-4 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 15
第三章 實驗設計 16
3-1單層薄膜成長 16
3-2多層薄膜成長 17
3-3 Superlattices成長 18
第四章 實驗結果與分析 20
4-1 單層薄膜分析結果 20
4-1-1 成長參數 20
4-1-2 XRD分析結果 21
4-2 多層薄膜分析結果 26
4-2-1 成長參數 26
4-2-2 XRD分析結果 27
4-2-3 SEM分析結果 31
4-3 Superlattices薄膜分析結果 32
4-3-1 成長參數 32
4-3-2 XRD分析結果 33
4-3-3 SEM分析結果 39
4-3-4 TEM分析結果 41
第五章 結論 45
參考文獻 46
參考文獻 References
[1] H. Zhang, C. Shen, S. Chen, Z. Xu, F. Liu, J. Li, and H. Gao, "Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template," Nanotechnology, vol. 16, p. 267, 11/05 2005.
[2] A. E. Rakhshani, "Preparation, characteristics and photovoltaic properties of cuprous oxide—a review," Solid-State Electronics, vol. 29, pp. 7-17, 08/04 1986.
[3] X. Li, H. Gao, C. J. Murphy, and L. Gou, "Nanoindentation of Cu2O Nanocubes," Nano Letters, vol. 4, pp. 1903-1907, 10/01 2004.
[4] K.-Y. Lin, Crystal Structure and Photoelectrochemical Properties of Electrodeposited Cuprous oxide, National Cheng Kung University Department of Chemical Engineering, 2005.
[5] J. Ramı́rez-Ortiz, T. Ogura, J. Medina-Valtierra, S. a. E. Acosta-Ortiz, P. Bosch, J. Antonio de los Reyes, and V. H. Lara, "A catalytic application of Cu2O and CuO films deposited over fiberglass," Applied Surface Science, vol. 174, pp. 177-184, 04/30 2001.
[6] E. W. Bohannan, M. G. Shumsky, and J. A. Switzer, "Epitaxial Electrodeposition of Copper(I) Oxide on Single-Crystal Gold(100)," Chemistry of Materials, vol. 11, pp. 2289-2291, 09/01 1999.
[7] Z. G. Yin, H. T. Zhang, D. M. Goodner, M. J. Bedzyk, R. P. H. Chang, Y. Sun, and J. B. Ketterson, "Two-dimensional growth of continuous Cu2O thin films by magnetron sputtering," Applied Physics Letters, vol. 86, p. 061901, 09/22 2005.
[8] S. Jeong, Thin zinc oxide and cuprous oxide films for photovoltaic applications.: The University of Minnesota 2010.
[9] M. Heinemann, B. Eifert, and C. Heiliger, "Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3," Physical Review B, vol. 87, p. 115111, 01/14 2013.
[10] R. D. Schmidt-Whitley, M. Martinez-Clemente, and A. Revcolevschi, "Growth and microstructural control of single crystal cuprous oxide Cu2O," Journal of Crystal Growth, vol. 23, pp. 113-120, 02/10 1974.
[11] F. Oba, F. Ernst, Y. Yu, R. Liu, H. M. Kothari, and J. A. Switzer, "Epitaxial Growth of Cuprous Oxide Electrodeposited onto Semiconductor and Metal Substrates," Journal of the American Ceramic Society, vol. 88, pp. 253-270, 02/09 2005.
[12] L. Hua and S. N. Tan, "Applications of a versatile sol-gel derived renewable electrode for capillary electrophoresis," Fresenius' Journal of Analytical Chemistry, vol. 367, pp. 697-700, 08/01 2000.
[13] A. Chen, H. Long, X. Li, Y. Li, G. Yang, and P. Lu, "Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition," Vacuum, vol. 83, pp. 927-930, 2009.
[14] T. Itoh and K. Maki, "Growth process of CuO(111) and Cu2O(001) thin films on MgO(001) substrate under metal-mode condition by reactive dc-magnetron sputtering," Vacuum, vol. 81, pp. 1068-1076, 05/25 2007.
[15] J. Deuermeier, J. r. Gassmann, J. Brötz, and A. Klein, "Reactive magnetron sputtering of Cu2O: Dependence on oxygen pressure and interface formation with indium tin oxide," Journal of Applied Physics, vol. 109, pp. 697-700, 04/01 2011.
[16] J.-Y. Park, K.-A. Lim, R. D. Ramsier, and Y.-C. Kang, "Spectroscopic and Morphological Investigation of Copper Oxide Thin Films Prepared by Magnetron Sputtering at Various Oxygen Ratios," Bulletin of the Korean Chemical Society, vol. 32, pp. 3395-3399, 04/28 2011.
[17] S.-H. Wu, "The properties of p-type cuprous oxide films prepared by reactive sputtering," Kun Shan University, 2008.
[18] Y.-L. Chin, "The structural and opto-electrical properties of cuprous oxide films deposited by reactive magnetron sputtering," Kun Shan University, 2006.
[19] A. H. Jayatissa, P. Samarasekara, and G. Kun, "Methane gas sensor application of cuprous oxide synthesized by thermal oxidation," physica status solidi (a), vol. 206, pp. 332-337, 12/12 2009.
[20] K. Kawaguchi, R. Kita, M. Nishiyama, and T. Morishita, "Molecular beam epitaxy growth of CuO and Cu2O films with controlling the oxygen content by the flux ratio of Cu/O+," Journal of Crystal Growth, vol. 143, pp. 221-226, 10/02 1994.
[21] N. Serin, T. Serin, Ş. Horzum, and Y. Çelik, "Annealing effects on the properties of copper oxide thin films prepared by chemical deposition," Semiconductor Science and Technology, vol. 20, p. 398, 11/09 2005.
[22] A. S. Reddy, S. Uthanna, and P. S. Reddy, "Properties of dc magnetron sputtered Cu2O films prepared at different sputtering pressures," Applied Surface Science, vol. 253, pp. 5287-5292, 04/15 2007.
[23] A. Sivasankar Reddy, P. Sreedhara Reddy, S. Uthanna, G. Venkata Rao, and A. Klein, "Effect of substrate temperature on the physical properties of dc magnetron sputtered Cu2O films," physica status solidi (a), vol. 203, pp. 844-853, 03/21 2006.
[24] J. R. Wu, M. J. Chiang, and C. W. Wu, "Deposition of nanocrystalline cuprous oxide films for solar cells application," in IEEE Conference on Electron Devices and Solid-State Circuits, 2007. EDSSC 2007. , 2007, pp. 209-212.
[25] A. S. Reddy, H.-H. Park, V. S. Reddy, K. V. S. Reddy, N. S. Sarma, S. Kaleemulla, S. Uthanna, and P. S. Reddy, "Effect of sputtering power on the physical properties of dc magnetron sputtered copper oxide thin films," Materials Chemistry and Physics, vol. 110, pp. 397-401, 08/15 2008.
[26] P. A. Higham and D. G. Teer, "Influence of the deposition parameters on the structure of ion-plated chromium," Thin Solid Films, vol. 58, pp. 121-125, 03/15 1979.
[27] Y. S. Lee, M. T. Winkler, S. C. Siah, R. Brandt, and T. Buonassisi, "Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering," Applied Physics Letters, vol. 98, p. 192115, 03/11 2011.
[28] V. F. Drobny and L. Pulfrey, "Properties of reactively-sputtered copper oxide thin films," Thin Solid Films, vol. 61, pp. 89-98, 07/16 1979.
[29] S. Ghosh, D. K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya, and W. Assmann, "Deposition of thin films of different oxides of copper by RF reactive sputtering and their characterization," Vacuum, vol. 57, pp. 377-385, 06/04 2000.
[30] S. Ishizuka, T. Maruyama, and K. Akimoto, "Thin-Film Deposition of Cu2O by Reactive Radio-Frequency Magnetron Sputtering," Japanese Journal of Applied Physics, vol. 39, p. L786, 04/26 2000.
[31] M. H. P. Reddy, P. N. Reddy, and S. Uthanna, "Structural, electrical and optical behaviour of rf magnetron sputtered cuprous oxide films," Indian Journal of Pure & Applied Physics, vol. 48, pp. 420-424, 09/30 2010.
[32] S. Benedetti, H. M. Benia, N. Nilius, S. Valeri, and H. J. Freund, "Morphology and optical properties of MgO thin films on Mo(001)," Chemical Physics Letters vol. 430, pp. 330–335, 08/25 2006.
[33] T.-J. Zhu and L. Lu, Orientation of MgO thin films on Si(001) prepared by pulsed laser deposition: Singpore-MIT Alliance, 2003.
[34] Y. Kaneko, N. Mikoshiba, and T. Yamashita, "Preparation of MgO Thin Films by RF Magnetron Sputtering," Japanese Journal of Applied Physics, vol. 30, p. 1091, 01/29 1991.
[35] H. Kupfer, R. Kleinhempel, F. Richter, C. Peters, U. Krause, T. Kopte, and Y. Cheng, "High-rate deposition of MgO by reactive ac pulsed magnetron sputtering in the transition mode," Journal of Vacuum Science & Technology A, vol. 24, pp. 106-113, 07/26 2006.
[36] Y. H. Cheng, H. Kupfer, F. Richter, and A. M. Paraian, "Deposition of MgO films by pulsed mid-frequency magnetron sputtering," Applied Surface Science, vol. 200, pp. 117-124, 11/15 2002.
[37] S. Mahadeva, J. Fan, A. Biswas, K. Sreelatha, L. Belova, and K. Rao, "Magnetism of Amorphous and Nano-Crystallized DC-Sputter-Deposited MgO Thin Films," Nanomaterials, vol. 3, p. 486, 06/13 2013.
[38] P. R. Markworth, X. Liu, J. Y. Dai, W. Fan, T. J. Marks, and R. P. H. Chang, "Coherent island formation of Cu2O films grown by chemical vapor deposition on MgO(110)," Journal of Materials Research, vol. 16, pp. 2408-2414, 08 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code