Responsive image
博碩士論文 etd-0727116-224432 詳細資訊
Title page for etd-0727116-224432
論文名稱
Title
應用於軟性電子之透明導電氧化鋅薄膜
Study of Transparent Conductive Zinc Oxide Thin Film on Plastic Substrates Deposited Cathodic Vacuum Arc Deposition System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-27
繳交日期
Date of Submission
2016-08-30
關鍵字
Keywords
陰極真空電弧沉積系統、低溫製程、純氧化鋅、透明導電薄膜、高分子基板
cathodic vacuum arc deposition, low temperature process, pure zinc oxide, polymer substrate, conductive, transparent
統計
Statistics
本論文已被瀏覽 5750 次,被下載 37
The thesis/dissertation has been browsed 5750 times, has been downloaded 37 times.
中文摘要
本研究利用陰極真空電弧沉積系統(Cathodic vacuum arc deposition system,CVAD)以低溫製程技術(< 75℃)製備純氧化鋅(Zinc oxide,ZnO)透明導電薄膜於高分子基板上。討論在不同製程變因下,薄膜的材料、光學、電學和機械特性。
實驗分析得知,純氧化鋅薄膜在不同高分子基板(PET、PVB、PI)中,所有特性差不多。藉由薄膜的透光導電性能係數(FOM),PET、PVB與PI分別為1E-3、8E-4與8.2E-4。因此,後續研究選用PET作為本研究之基板。
研究氧化鋅/鋁金屬/氧化鋅三層結構的光電特性,鋁金屬作為導電性質的緩衝層。在鋁為定值(20 nm)狀態下,改變氧化鋅薄膜的厚度(50、100、150和200 nm),探討各種光電性能,實驗結果得知氧化鋅(50 nm)/鋁金屬(20 nm)/氧化鋅(50 nm) 三層結構可作為一個良好的透明導電薄膜(50 nm:3.4E-4、100 nm:2.3E-5、150 nm:2.2E-5、200 nm:1.9E-5)。
在固定電弧電流在60A,氬氣氣體流量固定在20 sccm時,利用不同氧氣與氬氣氣體流量比(6:1、7:1、8:1、9:1和10:1)為變因,來製備氧化鋅薄膜,並進行薄膜性能比較。結果得知,氣體流量比在8:1時,薄膜的化學劑量比具有較佳值,其光學穿透性(86.38%)和電特性(電阻係數ρ:3.65 x10-3 Ω-cm,且載子移動率μ:4.83 cm2/V·s)皆比其他四項參數來的好。
在固定氧氣氬氣氣體流量比定於8:1之後,改變不同電流強度(40、50、60、70和80 A)看對純氧化鋅薄膜之影響。當電流強度在60A的時候,發現其有最佳的薄膜品質、光學穿透性(86.38%)和電特性(電阻係數ρ:5.88 x10-3 Ω-cm,且載子移動率μ:11.24 cm2/V·s)。
最後,本研究探討氧化鋅薄膜做於PET基板上機械性質,並與文獻樣品來做比較。在荷重力到在超過1980 uN及刮痕力道在超過40mN之後,顯示出對薄膜破壞情況。文獻指出,一厚度664nm之濺鍍氧化鋅摻鋁(ZnO:Al、簡寫為AZO)薄膜,在荷重800uN時,會產生薄膜破裂之情況。另一厚度約300nm於PET基板上之濺鍍氧化鋅薄膜,在刮痕力道約30mN時,就會產生薄膜與基板分離之情況。在相似的條件,針對氧化鋅薄膜之硬度與基板之間的附著性,陰極電弧製備的氧化鋅薄膜優於濺鍍系統製備的氧化鋅。
Abstract
This work investigated pure, conductivity and transparency zinc oxide (ZnO) thin films on the polymer substrates at a low temperature (< 75℃) by using cathodic vacuum arc deposition (CVAD) system. We reported the material, optical, electrical and mechanical properties of ZnO thin film with various processing conditions.
The pure ZnO thin films were deposited on the various polymer substrates such as PET, PVB and PI substrate and the properties of the deposited ZnO tin films were investigated. The figure of merit (FOM) based on the transparent and conductive property was used to determine the quality of the deposited ZnO thin film on the various polymer substrate. The FOM for PET, PVB and PI were 1E-3, 8E-4 and 8.2E-4. Therefore, the PET substrate was selected in the following research.
The ZnO/Al/ZnO multistructure is a good transparent and conductive thin film with Al is a seed buffer layer. The Al thickness of 20 nm was a fixed and the thickness of the ZnO film were varied with 50, 100,150 and 250 nm. When the thickness of ZnO thin film was in the 50 nm, the ZnO/Al/ZnO multistructure has a value of FOM (50 nm:3.4E-4, 100 nm:2.3E-5, 150 nm:2.2E-5, 200 nm:1.9E-5).
ZnO thin films were deposited with the different O2/Ar gas flow ratio (6:1, 7:1, 8:1, 9:1 and 10:1, Ar gas flow in 20 sccm). The average transmittance of 86.38% in the visible region and the resistivity (ρ) of 3.65 x10-3 Ω-cm with the mobility (μ) of 4.83 cm2/V·s was obtained for the ZnO thin film under O2/Ar 8:1.
With arc current in 60 A and the O2/Ar gas flow ratio in the 8:1, the effect of various arc currents (40、50、60、70 and 80 A) on the properties of the pure ZnO film were investigated. Under the arc current of 60 A, the deposited thin film had a high average transmittance of 86.38% in the visible region and the resistivity (ρ) of 5.88 x10-3 Ω-cm with the mobility (μ) of 11.24 cm2/V·s.
Finally, the mechanical properties of the deposited ZnO thin film on the PET substrate were investigated. It was found that the deposited ZnO thin film could bear under the load in 1980 uN and was cracked under the scratch load in 40 mN. Compared with the reference sample, the crack of sputtered Al-doped ZnO (AZO) film was appeared in the load of 800 uN as the AZO thin film thickness was 664 nm. The scratch load of sputtered ZnO thin film on PET substrate with 300 nm thickness was 30 mN. Thus, the deposited ZnO thin film by using CVAD system had better hardness and adhesion than those using sputtering system.
目次 Table of Contents
致謝 I
摘要 II
Abstract IV
Contents VI
List of Figures IX
List of Tables XIII
1- 1 Research Background 1
1- 2 Research status of the transparent conductive film 3
1- 3 Motivation and target 5
1- 4 Research structure 5
Chapter 2 Theory 7
2- 1 Properties of ZnO 7
2- 2 Material structure of ZnO 7
2- 3 Band gap structure of ZnO 9
2- 4 The electrical property 10
2-4- 1 The conductivity 10
2-4- 2 The carrier concentration 11
2- 5 The optical property 12
2- 6 Correlation of optical and electrical properties 14
2- 7 Defect level of ZnO 15
2- 8 Special nature of ZnO to transparent conductive characteristic 18
2- 9 The deposition methods of ZnO 18
2-9- 1 Magnetron Sputtering 18
2-9- 2 Pulsed Laser Deposition (PLD) 19
2-9- 3 Evaporation 19
2-9- 4 Chemical Vapor Deposition (CVD) 19
2-9- 5 Spray Pyrolysis 20
2-9- 6 Sol-Gel 20
2-9- 7 Cathodic Vacuum Arc Deposition (CVAD) 20
2- 10 Polymer substrate 21
2-10- 1 Poly(Ethylene) Terephthalate (PET) 21
2-10- 2 Poly(Vinyl) Butyral (PVB) 22
2-10- 3 Polyimide (PI) 22
Chapter 3 Experimental methods and procedures 23
3- 1 Experiment design 23
3- 2 Cathodic vacuum arc deposition 24
3- 3 Analysis equipment for ZnO thin film properties 25
3-3- 1 X-ray diffraction (XRD) 25
3-3- 2 Ultraviolet–visible spectroscopy (UV-Vis spectroscopy) 28
3-3- 3 Photoluminescence (PL) 29
3-3- 4 Four Point 32
3-3- 5 Hall measurement 33
3-3-6 Nanoindentaiton 36
4- 1Effect of various polymer substrates of ZnO Thin Films 39
1. Parameters 39
2. XRD analysis 39
3. UV analysis 41
4. Electrical properties 43
4-2 Effect of different ZnO thin film thickness on ZnO/Al/ZnO layer. 45
1. Parameters 45
2. XRD analysis 45
3. UV analysis 46
4. Electrical analysis 47
4-3 Effect of various gas flow ratio for ZnO thin film on the PET substrate. 50
1. Parameter 50
2. XRD analysis 50
3. UV analysis 53
4. PL analysis 55
5. Electrical property 56
4-4 Effect of arc current or ZnO thin film on the PET substrate. 59
1. Parameter 59
2. XRD analysis 59
3. UV analysis 62
4. PL analysis 64
5. Electrical property 65
4-5 The mechanical property or ZnO thin film on the PET substrate. 67
1. Parameter 67
2. Material, optical and electrical analysis 67
3. Mechanical analysis 68
Chapter 5 Conclusions 73
Reference 76
參考文獻 References
[1] A. Salleo, W. S. Wong, “Flexible Electronics,” Springer, 2009.
[2] N. T. Zou; X. J. Liao, S. H. Liang, “Secondary display revolution-flexible display development and application opportunities,” Industrial Technology Intelligence Services, Taiwan, 2005
[3] R. Das, P. Harrop, “Printed, Organic & Flexible Electronics Forecasts, Players & Opportunities 2016-2026,” IDTechEx, 2015.
[4] Yugang Sun and John A. Rogers, “Semiconductor Nanomaterials for Flexible Technologies,” Elsevier, 2010.
[5] Stergios Logothetidis, “Handbook of Flexible Organic Electronics,” Elsevier, 2014.
[6] S. Calnan, A. N. Tiwari. “High Mobility Transparent Conducting Oxides for Thin Film Solar Cell,” Thin Solid Films, Vol. 518, pp. 1839-1849, 2010.
[7] Ü. Özgür, Y. I. Alivov, C. Liu, “A Comprehensive Review of ZnO Materials and Devices,” Journal of Applied Physics, Vol. 98, pp. 041301, 2005.
[8] D. S. Ginley, J. D. Perkins., “Handbook of Transparent Conductors,“ Springer, 2010.
[9] G. Exarhos, X. Zhou, “Discovery-Based Design of Transparent Conducting Oxide Films,” Thin Solid Films, Vol. 515, pp. 7025-7052, 2007.
[10] K.s Ellmer, A. Klein, B. Rech, “Transparent Conductive Zinc Oxide,” Springer, 2008.
[11] N. H. Nickel, E. Terukov, “Zinc Oxide -A Material for Micro- and Optoelectronic Applications,” Springer, 2004.
[12] T. J. Coutts, J. D. Perkins, D. S. Ginley, “Transparent Conducting Oxides: Status and Opportunities in Basic Research,” National Renewable Energy Laboratory, 1999.
[13] F. Streintz, “Ueber die elektrische Leitfahigkeit von gepressten Pulvern,” Annalen der Physik (Leipzig), Vol. 9, pp. 854-885, 1902.
[14] K. Badeker, “Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen” Annalen der Physik, Vol.327, pp.749-766,1907.
[15] G. Rupprecht, “Untersuchungen der elekrischen und lichtelektrischen leitfahigkeit dunner indiumoxydschichten,” Zeitschrift für Physik, Vol. 139, pp. 504-217, 1954
[16] D. M. Mattox, V. H. Mattox, “50 Years of Vacuum Coating Technology and the Growth of the Society of Vacuum Coaters,” Society of Vacuum Coaters, 2007
[17] G. B. Palmer, K. R. Poeppelmeier, T. O. Mason, “Conductivity and transparency of ZnO/SnO2–co substituted In2O3”, Chemistry of Materials, Vol. 9, pp. 3121–3126, 1997.
[18] T. Minami, “Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode application,” Thin Solid Films, Vol.516, pp. 1314-1321, 2008.
[19] H. Morkoç, Ü. Özgür, “Zinc Oxide: Fundamentals, Materials and Device Technology,” Wiley, 2009.
[20] K. H. Ri, Y. B. Wang, W. L. Zhou, J. X. Gao, X. J. Wang, J. Yu, “The effect of SiO2 buffer layer on the electrical and structural properties of Al-doped ZnO films deposited on soda lime glasses,” Applied Surface Science, Vol. 257, pp. 5471-5475, 2011.
[21] X. Jing , “Transparent Conductive Oxide Films,” Higher Education Press, 2008
[22] B. G. Streetman, S Banerjee, “Solid State Electronic Device,” Prentice Hall, 2005.
[23] P. S. Kireev, “Semiconductor Physics,” Mir Moscow, 1978.
[24] J. R. Bellingham, W. A. Phillips, C. J. Adkins, “Intrinsic performance limits in transparent conducting oxides,” Journal of Materials Science Letters, Vol. 11, pp. 263-265, 1992.
[25] D. H. Zhang, H. L. Ma, “Scattering mechanisms of charge carriers in transparent conducting oxide films,” Applied Physics A, Vol. 62, pp. 487-492, 1996.
[26] J. Bruneaus, X. Cachet, M Forment, A. Messad, “Correlation between structural and electrical properties of sprayed tin oxide films with and without fluorine doping,” Thin Solid Films, Vol. 197, pp.129-142, 1991.
[27] J. C. Manifacier, M. De Murcia, J. P. Fillard, E. Vicario, “Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure” Thin Solid Films, Vol. 41, pp. 127-135, 1977.
[28] J. I. Pankove, “Optical Processes in Semiconductor,” Prentice Hall, 2010.
[29] E. Burstein, “Anomalous Optical a sorption limit in InSb,” Physics Review, Vol. 93, pp. 632-633, 1954.
[30] K. L. Chopra, S. Major, D. K. Pandya, “Transparent conductors—A status review,” Thin Soild Films, Vol. 102, pp.1-46, 1983.
[31] M. Fox, “Optical Properties of Solids,” Oxford University Press, 2001.
[32] I. Hamberg, C. G. Granqvist, K. F. Berggren, B. E. Sernelius, L. Engstrom, “Band-gap widening in heavily Sn-doped In2O3,” Physical Review B, Vol. 30, pp. 3240, 1984.
[33] S. M. Lukas, Judith L. MacManus-Driscoll, “ZnO – nanostructure, defects and devices,” Materialstoday, Vol. 10, pp. 40–48, 2007.
[34] X. M. Fan, J. S. Lian, Z. X. Guo, “ZnO thin film formation on Si (111) by laser ablation of Zn target in oxygen atmosphere,” Journal of Crystal Growth, Vol. 279, pp. 447-453, 2005.
[35] D. R. Sahu, S. Y. Lin, J. L. Huang,” Improved properties of Al-doped ZnO film by electron beam evaporation technique,” Microelectronics Journal, Vol. 38, pp. 245-250, 2007.
[36] M. A. Kaid, A. Ashour, “Preparation of Al-doped ZnO films by spray pyrolysis technique,” Applied Surface Science, Vol. 253, pp. 3029-3033, 2007.
[37] L. Znaidi, “Sol–gel-deposited ZnO thin films: A review,” Materials Science and Engineering: B, Vol. 174, pp. 18–30, 2010.
[38] C. T. Pan, R. Y. Yang, M. H. Weng, C. W. Huang, “Properties of low-temperature deposited ZnO thin films prepared by cathodic vacuum arc technology on the different flexible substrates,” Thin Solid Films, Vol. 539, pp. 290-293, 2013.
[39] C. W. Huang, M. H. Weng, C. T. Pan, R. Y. Yang, “Nanoindentation of conductivity zinc oxide thin film on PET substrate, “Materials Letters, Vol. 175, pp. 60-62, 2016.
[40] R. Y. Yang, M. H. Weng, C. T. Pan, C. C. Huang, “Low-temperature deposited ZnO thin films on the flexible substrate by cathodic vacuum arc technology,” Applied Surface Science, Vol. 257, pp. 7119–7122, 2011.
[41] R. Y. Yang, M. H. Weng, T. L. Yang, C. C. Huang, “Properties of Low Temperature Deposited ZnO Thin Films on the Glass Substrate by Cathodic Arc Plasma Technology with Different Film Thickness,” Journal of Computational and Theoretical Nanoscience, Vol. 19, pp. 2818-2822, 2013.
[42] M. H. Weng, C. T. Pan, R. Y. Yang, C. C. Huang, “Structure, optical and electrical properties of ZnO thin films on the flexible substrate by cathodic vacuum arc technology with different arc currents,” Ceramics International, Vol. 37, pp. 3077–3082, 2011.
[43] B. K. Tay, Z. W. Zhao, D. H. C. Chua, “Review of metal oxide films deposited by filtered cathodic vacuum arc technique,” Materials Science and Engineering: R: Reports, Vol. 52, pp. 1-48, 2006.
[44] R. L. Boxman, D. M. Sanders, P. J. Martin, “Handbook of Vacuum Arc Science & Technology: Fundamentals and Applications,” Elsevier, 1995.
[45] E. Oks, I. Brown, “Emerging Applications of Vacuum-Arc-Produced Plasma, Ion and Electron Beams,” Springer, 2002.
[46] A. Anders, "Cathodic Arcs: From Fractal Spots to Energetic Condensation," Springer, 2008.
[47] Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, K.Y. Tse, H. H. Hng, “Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature” Journal of Applied Physics, Vol. 94, pp. 1597, 2003.
[48] C. Li, X. C. Li, P. X. Yan, E. M. Chong, Y. Liu, G. H. Yue, X. Y. Fan, “Research on the properties of ZnO thin films deposited by using filtered cathodic arc plasma technique on glass substrate under different flow rate of O2,” Applied Surface Science, Vol. 253, pp. 4000-4005,2007.
[49] H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng, B. K. Tay, “Structural, electrical andoptical properties of Al-doped ZnO thin films prepared by filtered cathode vacuum arc technique,” Journal of Crystal Growth, Vol. 268, pp. 596–601, 2004.
[50] C. Li, X. C. Li, P. X. Yan, “Research on the properties of ZnO thin films deposited by using filtered cathodic arc plasma technique on glass substrate under different flow rate of O2,” Applied Surface Science, vol. 253, pp. 4000–4005, 2007.
[51] J. R. Roth, “Industrial Plasma Engineering,” Institute of Physics Publishing, 1995.
[52] C. E. Sittner, “Physik und Technologie Dünner Schichten,” Thin Film Group TU-Wien, 2006.
[53] A. N. Banerjee, C. K. Ghosh, K. K. Chattopadhyay, “Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique,” Thin Solid Films, Vol. 496, pp. 112-116, 2006.
[54] M. Teotia, R. K. Soni, “Polymer Interlayers for Glass Lamination-A Review,” International Journal of Science and Research, Vol. 3, pp. 1264-1270, 2006.
[55] X. T. Hao, J. Ma, D. H. Zhang, Y. G. Yang, H. L. Ma, C. F. Cheng, X. D. Liu, “Comparison of the properties for ZnO:Al films deposited on polyimide and glass substrates,” Materials Science and Engineering B, Vol. 90, pp.50–54, 2002.
[56] H. P. Klug, L. E. Alexander, “X-ray Diffraction Procedures,” John Wiley & Sons, 1954.
[57] B. D. Cullity, “Elements of X-ray Diffraction,” Addson-Wesley, 1978.
[58] L. Sagalowicz, G. R. Fox, “Planar defects in ZnO thin films deposited on optical fibers and flat substrates,” Journal of Materials Research, Vol. 14, pp. 1876-1885,1999.
[59] H. C. Ong, A. X. E. Zhu, G. T. Du, “Dependence of the excitonic transition energies and mosaicity on residual strain in ZnO thin films,” Applied Physics Letters, Vol. 80, pp. 941, 2002.
[60] C. Wang, P. Zhang, J. Yue, Y. Zhang, L. Zheng, “Effects of annealing and supersonic treatment on the structure and photoluminescence of ZnO films,” Physica B: Condensed Matter, Vol. 403, pp. 2235-2240, 2008.
[61] P. Misra, M. A. Dubinskii, “Ultraviolet Spectroscopy and UV Lasers,” Marcel Dekker, 2002.
[62] K. N. Shinde, S. J. Dhoble, H. C. Swart, K. Park, “Phosphate Phosphors for Solid-State Lighting,” Springer, 2012.
[63] F. M. Smits, “Measurement of sheet resistivities with the four-point probe,” Bell System Technical Journal. Vol. 34, pp.711-718, 1958.
[64] D. Schroder, “Semiconductor material and device characterization,” Wiley, 2006.
[65] J. Ma, D. Zhang, S. Li, J. Zhao, H. Ma, “Optical and Electrical Properties of Sn-doped Indium Oxide Films Deposited on Polyester by Reactive Evaporation,” Japanese Journal of Applied Physics, Vol. 37, pp. 5614, 1998.
[66] A. Anders, S. H. N. Lima, K. M. Yu, J. Andersson, J. Rosén, M. McFarland, J. Brown, “High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition,” Thin Solid Films, Vol. 518, pp. 3313–3319, 2010.
[67] E. S. Tuzemen, S. Eker, H. Kavak, R. Esen, “Dependence of film thickness on the structural and optical properties of ZnO thin films,” Applied Surface Science, Vol. 255, pp.6195–6200, 2009.
[68] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors,” Japanese Journal of Applied Physics, Vol. 45, pp.4303-4308, 2006.
[69] G. Haacke, “New figure of merit for transparent conductors,” Journal of Applied Physics, Vol. 47, pp. 4086–4089, 1976.
[70] P. Y. Dave, K. H. Patel, K. V. Chauhan, A. K. Chawla, S. K. Rawal, “Examination of Zinc Oxide Films Prepared by Magnetron Sputtering,” Procedia Technology, Vol. 23, pp. 328-335, 2016.
[71] K. Vijayalakshmi, K. Karthick, P. Dhivya, M.Sridharan, “Low power deposition of high quality hexagonal ZnO film grown on Al2O3 (0001) sapphire by dc sputtering,” Ceramics International, Vol. 39, pp.5681–5687, 2013.
[72] S. Goldsmith, “Filtered vacuum arc deposition of undoped and doped ZnO thin films: Electrical, optical, and structural properties,” Surface & Coatings Technology, Vol. 201, pp. 3993–3999, 2006.
[73] J. Tauc, R. Grigorvici, Y. Yanca, “Optical Properties and Electronic Structure of Amorphous Germanium,” Physica Status Solidi (b), Vol. 15, pp. 627-637, 1966.
[74] H. Kavak, E. Senadım Tuzemen, L.N. Ozbayraktar, R. Esen, “Optical and photoconductivity properties of ZnO thin films grown by pulsed filtered cathodic vacuum arc deposition,” Vacuum, Vol. 83, pp. 540–543, 2009.
[75] Z. Y. Zhang, C. G. Bao, S. Q. Ma, L. L. Zhang, S. Z. Hou, “Effects of deposition power and pressure on the crystallinity of Al-doped ZnO thin films at glass substrates by low temperature RF magnetron sputtering,” Journal of the Australian Ceramic Society, Vol. 48, pp.214–222, 2012.
[76] S. A. Zahra, “Effect of grain size on the electrical conduction mechanism for aluminum doped cds thin films,” Journal of Electron Devices, Vol. 17, pp. 1494-1499, 2013.
[77] S. Christoulakis, M. Suchea, E. Koudoumas, M. Katharakis, N. Katsarakis, G. Kiriakidis, “Thickness influence on surface morphology and ozone sensing properties of nanostructured ZnO transparent thin films grown by PLD,” Applied Surface Science, Vol. 252, pp. 5351–5354, 2006.
[78] T. C. Li, C. F. Han, B. H. Wu, P. T. Hsieh, J. F. Lin, “Effects of prestrain applied to a polyethylene terephthalate substrate before the coating of al-doped zno film on film quality, electrical properties, and pop-in behavior during nanoindentation,” Journal of Microelectromechanical Systems, Vol. 21, pp. 1059-1070, 2012.
[79] T. H. Fang, W. J. Chang, C. M. Lin, “Nanoindentation characterization of ZnO thin films,” Materials Science and Engineering A, Vol. 452–453, pp. 715–720, 2007.
[80] W. K. Wang, H. C. We, C. H. Cheng, W. C. Chou, W. H. Yau, C. H. Hung, C. P. Chou, “Nanotribological behavior of ZnO films prepared by atomic layer deposition,” Journal of Physics and Chemistry of Solids, Vol. 75, pp. 334-338, 2014.
[81] K. A. Sierros, D. A. Banerjee, N. J. Morris, D. R. Cairns, I. Kortidis, G. Kiriakidis, “Mechanical properties of ZnO thin films deposited on polyester substrates used in flexible device applications,” Thin Solid Films, Vol. 519, pp. 325–330, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code