Responsive image
博碩士論文 etd-0727118-094042 詳細資訊
Title page for etd-0727118-094042
論文名稱
Title
使用稀疏完美高斯整數序列的通道編碼多載波分碼多重接取架構
Channel-Coded MC-CDMA Schemes Using Sparse Perfect Gaussian Integer Sequences
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-31
繳交日期
Date of Submission
2018-08-27
關鍵字
Keywords
低密度奇偶校驗碼、碼簿設計、多載波分碼多重接取、多重接取干擾、干擾消除、稀疏完美高斯整數序列、外部消息傳遞圖
Codebook design, extrinsic information transfer (EXIT) chart, interference cancellation (IC), low-density parity-check (LDPC) code, multiple access interference (MAI), multi-carrier code division multiple access (MC-CDMA), sparse perfect Gaussian integer sequence (SPGIS)
統計
Statistics
本論文已被瀏覽 5651 次,被下載 0
The thesis/dissertation has been browsed 5651 times, has been downloaded 0 times.
中文摘要
多載波分碼多重接取 (Multi-Carrier Code Division Multiple Access, MC-CDMA) 系統應用在上鏈傳輸時,訊號會受到頻率選擇性衰減通道 (Frequency-Selective Fading Channel) 影響,使用者所屬的展頻碼之間的正交性會被破壞,造成嚴重的多重接取干擾 (Multiple Access Interference, MAI);在過去文獻中提出了一種降低吞吐量來避免MAI問題的MC-CDMA系統,其中結合展頻矩陣以及反離散傅立葉轉換矩陣並使用了一種由稀疏完美高斯整數序列 (Sparse Perfect Gaussian Integer Sequences) 建構的轉換矩陣,這個轉換矩陣可以降低峰均功率比 (Peak-to-Average Power Ratio) 及降低傳送端及接收端的計算複雜度。本篇討論若這個MC-CDMA系統提升吞吐量,額外產生的MAI問題之解決方法,我們提出了一種機率概念干擾消除演算法 (Probability Interference Cancellation, PbIC),來解決MAI產生的問題,除此之外我們還提出了長碼與短碼兩種方式再改善加入了PbIC演算法的效能,長碼使用的是低密度奇偶校驗 (Low-Density Parity-Check, LDPC) 碼,論文裡會提到如何使用外部消息傳遞圖 (Extrinsic Information Transfer Charts, EXIT Charts) 來對LDPC碼做碼搜尋,並解釋如何將接收端的訊號計算出每個位元的對數概似機率值,短碼使用的是碼簿,而碼簿的設計理念是使最小歐式距離最大化,由模擬結果會說明使用PbIC演算法比MC-CDMA系統吞吐量提升,以及PbIC演算法加入長碼與短碼後與PbIC演算法的效能比較。
Abstract
Multi-carrier code division multiple access (MC-CDMA) occurs multiple access interference (MAI) in uplink transmission with frequency-selective fading channel because the codes lose the orthogonality. A Novel MC-CDMA is proposed in the past study to avoid MAI by properly assigned signal location per user and employing the sparse perfect Gaussian integer sequences (SPGISs) as time-domain spreading codes which are combined with frequency-domain spreading codes and inverse discrete Fourier transform. The SPGISs are obtained by the linear combination of four base sequences or their cyclic-shift equivalents. The number of nonzero elements of SPGISs is 16 most. But, if the number of subcarriers is fixed for each user, it will limit the number of users. In this work, we propose the probability based interference cancellation (PbIC) algorithm to mitigate the MAI term when we increase the number of users. Moreover, we apply the low-density parity-check (LDPC) code as our outer code to enhance the system performance. And we use the extrinsic information transfer (EXIT) charts to calculate the fittest code for the system. Besides, we use another codebook design instead of long channel codes to improve the performance. According to the principle of the maximum of the minimum Euclidean distance, we produce two kinds of codebook design. Simulation results demonstrate that the system has better throughput and bit error rate under PbIC algorithm and reveal better improvement when using LDPC codes or the codebook design for the PbIC algorithm.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
Chapter 1 導論 1
1.1 研究動機與貢獻 3
1.2 論文架構 4
Chapter 2 系統模型 5
2.1 正交分頻多工之基本架構 5
2.2 多載波分碼多重接取系統 10
Chapter 3 轉換矩陣之設計 12
3.1 展頻碼矩陣與轉換矩陣 12
3.2 使用稀疏完美高斯序列產生轉換矩陣之方法 13
Chapter 4 預編碼多載波分碼多重接取上鏈系統設計使用干擾消除演算法 16
4.1 傳送端架構 16
4.2 接收端架構 18
4.3 使用機率概念消除用戶間干擾演算法 20
4.3.1 用戶間干擾的產生 21
4.3.2 機率概念干擾消除演算法 25
Chapter 5 低密度奇偶校驗碼系統設計 31
5.1 加入低密度奇偶校驗碼之傳送端架構 31
5.2 加入低密度奇偶校驗碼之接收端架構 32
5.3 最大事後機率偵測器 34
Chapter 6 設計低密度奇偶校驗碼 36
6.1 外部消息傳遞圖介紹 36
6.2 外部消息傳遞圖的計算 37
Chapter 7 傳送端碼簿設計 40
7.1 碼簿的設計要點 41
7.2 碼簿設計介紹 42
7.2.1 通用碼簿 42
7.2.2 分組碼簿 43
7.3 碼簿系統設計 44
7.3.1 運用碼簿之傳送端 44
7.3.2 通用碼簿之編碼調變 44
7.3.3 分組碼簿之編碼調變 45
7.3.4 運用碼簿之接收端 46
Chapter 8 模擬結果與討論 48
Chapter 9 結論 57
Chapter 10 附錄 58
通用碼簿 58
分組碼簿 59
REFERENCES 61
中英文對照表 67
縮寫對照表 72
參考文獻 References
[1] A. J. Viterbi, CDMA: Principle of Spread Spectrum Communication, 1st ed. Addison Wesley, 1995.
[2] S. Hara and R. Prasad, “DS-CDMA, MC-CDMA and MT-CDMA for mobile multi-media communications,” in Proc. Veh. Technol. Conf., Atlanta, GA, Apr. 1996, vol. 2, no. 5, pp. 1106–1110.
[3] S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE Commun. Mag., vol. 35, no. 12, pp. 126–133, Dec. 1997.
[4] A. C. McCormick and E. A. AI-Susa, “Multicarrier CDMA for future generation mobile communication,” IEEE Electron. & Commun. Eng. J., vol. 14, no. 5, pp. 52–60, Apr. 2002.
[5] R. Prasad and T. Ojanpera, “An overview of CDMA evolution toward wideband CDMA,” IEEE Commun. Surveys, vol. 1, no. 1, pp. 2–29, First Quarter 1998.
[6] Lie-Liang Yang and L. Hanzo, “Performance of broadband multicarrier DS-CDMA using space-time spreading-assisted transmit diversity,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp. 885–894, May 2005.
[7] G. Manglani and A. K. Chaturvedi, “Multi-tone CDMA design for arbitrary frequency offsets using orthogonal code multiplexing at the transmitter and a tunable receiver,” IET Commun., vol. 5, no. 15, pp. 2157–2166, Oct. 2011.
[8] S. Hara and R. Prasad, “Design and performance of multicarrier CDMA system in frequency-selective Rayleigh fading channels,” IEEE Trans. Veh. Technol., vol. 48, no. 5, pp. 1584–1595, Sep. 1999.

[9] C. W. You and D. S. Hong, “Multicarrier CDMA systems using time-domain and frequency-domain spreading codes,” IEEE Trans. Commun., vol. 51, no. 1, pp. 17–21, Jan. 2003.
[10] M. Guenach and H. Steendam, “Performance evaluation and parameter optimization of MC-CDMA,” IEEE Trans. Veh. Technol., vol. 56, no. 3, pp. 1165–1175, May 2007.
[11] K. L. Baum, T. A. Thomas, F. W. Vook, and V. Nangia, “Cyclic-prefix CDMA: an improved transmission method for broadband DS-CDMA cellular systems,” in Proc. WCNC, Orlando, USA, Mar. 2002, pp. 183–188.
[12] H. Cheng, M. Ma, and B. Jiao, “A novel type of code design for the CP-CDMA system: Comb spectrum grouped codes,” in Proc. IEEE 60th Veh. Technol. Conf., vol. 1, Los Angeles, CA, Sep. 2004, pp. 729–733.
[13] Hongbing Cheng, Meng Ma, and Bingli Jiao, “On the design of comb spectrum code for multiple access scheme,” IEEE Trans. Commun., vol. 57, no. 3, pp. 754–763, Mar. 2009.
[14] R. Frank, S. Zadoff, and R. Heimiller, “Phase shift pulse codes with good periodic correlation properties,” IEEE Trans. Inf. Theory, vol. 8, no. 6, pp. 381–382, Oct. 1962.
[15] C. P. Li and W. C. Huang, “A constructive representation for the Fourier dual of the zadoff–chu sequences,” IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4221–4224, Nov. 2007.
[16] W. W. Hu, S. H. Wang, and C. P. Li, “Gaussian integer sequences with ideal periodic autocorrelation functions,” IEEE Trans. Signal Process., vol. 60, no. 11, pp. 4006–4016, Nov. 2012.

[17] S. H. Wang, C. P. Li, H. H. Chang, and C. D. Lee, “A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions,” IEEE Trans. Commun., vol. 64, no. 1, pp. 365–376, Jan. 2016.
[18] S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, “A novel low-complexity precoded OFDM system with reduced PAPR,” IEEE Trans. Signal Process., vol. 63, no. 6, pp. 1366–1376, Mar. 2015.
[19] S. H. Wang and C. P. Li, “Novel MC-CDMA system using Fourier duals of sparse perfect Gaussian integer sequences,” in Proc. IEEE Int. Conf. Commun., Kuala Lumpur, Malaysia, May 2016, pp. 1–6.
[20] A. Scaglione, G. B. Giannakis, and S. Barbarossa, “Lagrange/vandermonde MUI eliminating user codes for quasi-synchronous CDMA in unknown multipath,” IEEE Trans. Signal Process., vol. 48, no. 7, pp. 2057–2073, July 2000.
[21] S. H. Tsai, Y. P. Lin, and C. C. J. Kuo, “MAI-free MC-CDMA systems based on Hadamard-Walsh codes,” IEEE Trans. Signal Process., vol. 54, no. 8, pp. 3166–3179, Aug. 2006.
[22] Z. Zvonar and D. Brady, “Linear multipath-decorrelating receivers for CDMA frequency-selective fading channels,” IEEE Trans. Commun., vol. 44, no. 6, pp. 650–653, June 1996.
[23] S. Verdú, Multiuser Detection, 1st ed. New York: Cambridge University Press, 1998.
[24] A. Duel-Hallen, “A family of multiuser decision-feedback detectors for asynchronous code-division multiple-access channels,” IEEE Trans. Commun., vol. 43, no. 2, pp. 421–434, Feb. 1995.
[25] S. Moshavi, “Multi-user detection for DS-CDMA communications,” IEEE Commun. Mag., vol. 34, no. 10, pp. 124–136, Oct. 1996.
[26] M. F. Madkour, S. C. Gupta, and Y. P. E. Wang, “Successive interference cancellation algorithms for downlink W-CDMA communications,” IEEE Trans. Commun., vol. 1, no. 1, pp. 169–177, Jan. 2002.
[27] P. Li, R. C. de Lamare, and R. Fa, “Multiple feedback successive interference cancellation detection for multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2434–2439, Aug. 2011.
[28] T. L. Narasimhan, P. Raviteja, and A. Chockalingam, “Generalized spatial modulation in large-scale multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 14, no. 7, pp. 3764–3779, July 2015.
[29] R. Hoshyar, F. P. Wathan, and R. Tafazolli, “Novel low-density signature for synchronous CDMA systems over AWGN channel,” IEEE Trans. Signal Process., vol. 56, no. 4, pp. 1616–1626, Apr. 2008.
[30] R. Hoshyar, R. Razavi, and M. Al-Imari, “LDS-OFDM an efficient multiple access technique,” in Proc. IEEE 71st Veh. Technol. Conf., Taipei, 2010, pp. 1–5.
[31] A. Stefanov and T. Duman, “Turbo-coded modulation for systems with transmit and receive antenna diversity over block fading channels: System model, decoding approaches, and practical considerations,” IEEE J. Select. Areas Commun., vol. 19, pp. 958–968, May 2001.
[32] A. Ghaffari, M. Leonardon, Y. Savaria, C. Jego, and C. Leroux, “Improving performance of SCMA MPA decoders using estimation of conditional probabilities,” in Proc. IEEE NEWCAS, Strasbourg, 2017, pp. 21–24.
[33] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.


[34] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” IEEE Trans. Commun., vol. 52, no. 4, pp. 670–678, Apr. 2004.
[35] H. Nikopour and H. Baligh, “Sparse code multiple access,” in Proc. IEEE PIMRC, London, Sep. 2013, pp. 332–336.
[36] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, “SCMA codebook design,” in Proc. IEEE 80th Veh. Technol. Conf., Vancouver, BC, Sep. 2014, pp. 1–5.
[37] M. Beko and R. Dinis, “Designing good multi-dimensional constellations,” IEEE Wireless Commun. Lett., vol. 1, no. 3, pp. 221–224, June 2012.
[38] C. P. Li, S. H. Wang, and C. L. Wang, “Novel low-complexity SLM schemes for PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2916–2921, May 2010.
[39] S. H. Wang, K. C. Lee, and C. P. Li, “A low-complexity architecture for PAPR reduction in OFDM systems with near-optimal performance,” IEEE Trans. Veh. Technol., vol. 65, no. 1, pp. 169–179, Jan. 2016.
[40] W. J. Huang, W. W. Hu, C. P. Li, and J. C. Chen, “Novel metric-based PAPR reduction schemes for MC-CDMA systems,” IEEE Trans. Veh. Technol., vol. 64, no. 9, pp. 3982–3989, Sep. 2015.
[41] M. L. Wang, C. P. Li, and W. J. Huang, “Semiblind channel estimation and precoding scheme in two-way multirelay networks,” IEEE Trans. Signal Process., vol. 65, no. 10, pp. 2576–2587, May. 2017.
[42] J. W. Pu, T. Y. Wang, S. H. Li, C. P. Li, and H. J. Li, “Performance analysis of relay selection in two-way relay networks with channel estimation errors,” IEEE Trans. Broadcast., vol. 61, no. 3, pp. 482–493, Sep. 2015.
[43] W. C. Huang, C. H. Pan, C. P. Li, and H .J. Li, “Subspace-based semi-blind channel estimation in uplink OFDMA systems,” IEEE Trans. Broadcast., vol. 56, no. 1, pp. 58–65, Mar. 2010.
[44] W. C. Huang, Y. S. Yang, and C. P. Li, “A new pilot architecture for sub-band uplink OFDMA systems,” IEEE Trans. Broadcast., vol. 59, no. 3, pp. 461–470, Sep. 2013.
[45] W. C. Huang, C. P. Li, and H. J. Li, “An investigation into the noise variance and the SNR estimators in imperfectly-synchronized OFDM systems,” IEEE Trans. Commun., vol. 9, no. 3, pp. 1159–1167, Mar. 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code