Responsive image
博碩士論文 etd-0727118-094438 詳細資訊
Title page for etd-0727118-094438
論文名稱
Title
多輸入多輸出稀疏編碼多重接取系統的一種碼簿設計方法
A Codebook Design Approach for MIMO-SCMA Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-31
繳交日期
Date of Submission
2018-08-27
關鍵字
Keywords
第五代行動通訊、稀疏編碼多重接取系統、多輸入多輸出系統、稀疏編碼多重接取系統碼簿設計、多維度星座點
Codebook design, factor graph, sparse code multiple access (SCMA), multiple-input multiple-output (MIMO), multi-dimensional constellations
統計
Statistics
本論文已被瀏覽 5672 次,被下載 0
The thesis/dissertation has been browsed 5672 times, has been downloaded 0 times.
中文摘要
將多輸入多輸出系統 (Multiple-Input Multiple-Output, MIMO) 技術應用到稀疏編碼多重接取系統 (Sparse Code Multiple Access, SCMA) 對於第五代行動通訊將會是一項重要的技術。透過結合MIMO與SCMA可以使頻譜效益更大,然而在現今的MIMO-SCMA系統中,並沒有考慮如何設計碼簿 (Codebook)。
首先,我們先提出新型的MIMO-SCMA系統,這種系統需要同時決定傳送天線的碼字 (Codeword),與傳統的空間多工不同,我們希望透過空間多樣性來取得優勢。
在設計碼簿方面,我們利用經典的正交振幅調變(Quadrature Amplitude Modulation, QAM) 先做設計,把用戶所使用的碼字間的最短距離最大化當作目標,同時也要考慮其他用戶的干擾情況,利用稀疏矩陣在空間資源上的看法,則可以獲得良好的多樣性增益 (Diversity Gain)。
除了16-QAM星座點以外,我們也透過搜尋其他星座點,嘗試建立比16-QAM所建立的碼簿還要更好的碼簿,而也確實使得母碼簿的最短距離更大了一些,但整體效能並不只由母碼簿 (Mother Codebook) 所決定,在這樣的資源下,依舊有我們缺乏考慮的地方。
由模擬結果顯示,不論我們如何設計其他星座點,只要有妥善的將數個空間資源以空間多樣性的角度同時使用,則至少一定會在高訊雜比 (Signal to Noise Power Ratio) 的情況下得到多樣性增益,進而使得表現的斜率變大;如果有妥善設計,則將會在可通訊的訊雜比範圍勝過傳統的系統架構。
Abstract
Sparse code multiple access (SCMA) is a non-orthogonal multiple access scheme for future fifth generation wireless networks. This scheme is considered as a promising way to support massive connectivity and increase the spectral efficiency of the next generation communication systems. Additionally, multiple-input multiple-output (MIMO) has been identified as a crucial technology for improving spectral efficiency. However, traditional MIMO-SCMA system only apply SCMA codebook to MIMO system by spatial multiplexing.
In this paper, we propose a novel downlink MIMO-SCMA system with the novel SCMA codebook. In order to increase channel capacity, the codebook will be designed not only at the time or frequency resources but also at the space resources simultaneously. Besides, this paper also provide a simple and complete method which using a kind of complex constellation and specific angle combination to construct codebooks for each users.
The simulation result shows that the proposed system with the proposed codebooks have a better performance compared to traditional scheme at the feasible signal to noise ratio range in terms of bit error rate. This phenomenon reveals our proposed scheme takes advantage of diversity gain.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
Chapter 1 導論 1
1.1 研究動機 6
1.2 論文架構 7
Chapter 2 系統介紹 8
2.1 多輸入多輸出無線通訊系統之基本架構 8
2.1.1 空間多工 8
2.1.2 空間多樣性 8
2.2 稀疏編碼多重接取系統之基本架構 10
Chapter 3 系統架構 12
3.1 傳統MIMO-SCMA系統架構 12
3.2 提出的新型系統架構 15
Chapter 4 碼簿設計 18
4.1 SCMA碼簿設計 18
4.1.1 稀疏矩陣 19
4.1.2 母碼簿 21
4.1.3 旋轉矩陣 23
4.2 提出的多天線SCMA碼簿設計 25
4.2.1 基於星座點之母碼簿設計方式 26
4.2.2 基於星座點之旋轉矩陣搜尋方法 29
4.3 星座點設計 31
4.3.1 基於12-PSK與QPSK組成星座點 31
4.3.2 基於8-PSK與8-PSK組成星座點 32
Chapter 5 模擬結果與討論 34
5.1 新型碼簿的討論與錯誤率 34
5.2 傳統系統與提出的系統錯誤率比較 37
5.3 不同星座點的比較 39
Chapter 6 結論 41
附錄 42
REFERENCE 45
中英對照表 51
縮寫對照表 56
參考文獻 References
[1] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Wireless Commun., vol. 17, no. 3, pp. 10–22, June 2010.
[2] J. Gozalvez, “South Korea launches LTE-advanced,” IEEE Veh. Technol. Mag., vol. 9, no. 1, pp. 10–27, Mar. 2014.
[3] S. H. Wang, J. C. Xie, C. P. Li, and Y. F. Chen, “A low-complexity PAPR reduction scheme for OFDMA uplink systems,” IEEE Trans. Wireless Commun., vol. 10, no. 4, pp. 1242–1251, Apr. 2011.
[4] W. C. Huang, C. H. Pan, C. P. Li, and H. J. Li, “Subspace-based semi-blind channel estimation in uplink OFDMA systems,” IEEE Trans. Broadcast., vol. 56, no. 1, pp. 58–65, Mar. 2010.
[5] L. Cimini, “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun., vol. 33, no. 7, pp. 665–675, July 1985.
[6] C. P. Li, S. H. Wang, and K. C. Chan, “Low complexity transmitter architectures for SFBC MIMO-OFDM systems,” IEEE Trans. Commun., vol. 60, issue 6, pp. 1712–1718, June 2012.
[7] W. W. Hu, C. P. Li, and J. C. Chen, “Peak power reduction for pilot-aided OFDM systems with semi-blind detection,” IEEE Commun. Lett., vol. 16, no. 7, pp. 1056–1059, July 2012.
[8] L. Dai, B. Wang, Y. Yuan, S. Han, C. L. I, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag., vol. 53, no. 9, pp. 74–81, Sep. 2015.
[9] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, “SCMA codebook design,” in Proc. IEEE 80th Veh. Technol. Conf., Vancouver, Sep. 2014, pp. 1–5.
[10] Y. Du, B. Dong, Z. Chen, P. Gao, and J. Fang, “Joint sparse graph-detector design for downlink MIMO-SCMA systems,” IEEE Wireless Commun. Lett., vol. 6, no. 1, pp. 14–17, Feb. 2017.
[11] L. Yu, X. Lei, P. Fan, and D. Chen, “An optimized design of SCMA codebook based on star-QAM signaling constellations,” in Proc. Int. Conf. Wireless Commun. Signal Process. (WCSP), Nanjing, China, Oct. 2015, pp. 1–5.
[12] D. Cai, P. Fan, X. Lei, Y. Liu, and D. Chen, “Multi-dimensional SCMA codebook design based on constellation rotation and interleaving,” in Proc. IEEE 83rd Veh. Technol. Conf., Nanjing, May 2016, pp. 1–5.
[13] Y. Zhou, Q. Yu, W. Meng, and C. Li, “SCMA codebook design based on constellation rotation,” in Proc. IEEE Int. Conf. Commun., Paris, May 2017, pp. 1–6.
[14] V. P. Klimentyev and A. B. Sergienko, “SCMA codebooks optimization based on genetic algorithm,” in Proc. European Wireless Conference, Dresden, Germany, May 2017, pp. 1–6.
[15] J. Peng, W. Chen, B. Bai, X. Guo, and C. Sun, “Joint optimization of constellation with mapping matrix for SCMA codebook design,” IEEE Signal Process. Lett., vol. 24, no. 3, pp. 264–268, Mar. 2017.
[16] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, ”Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 74–80, Feb. 2014.
[17] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proc. IEEE 77th Veh. Technol. Conf., Dresden, Germany, June 2013, pp. 1–5.
[18] T. T. Liu, X. M. Li, and L. Qiu, “Capacity for downlink massive MIMO MU-SCMA system,” in Proc. IEEE WCSP, Nanjing, China, Sep. 2015, pp. 1–5.
[19] S. Zhang, K. Xiao, B. Xiao, Z. Chen, B. Xia, D. Chen, and S. Ma, ”A capacity-based codebook design method for sparse code multiple access systems,” in Proc. IEEE Int. Conf. Wireless Commun. Signal Process., Oct. 2016, pp. 1–5.
[20] S. Zhang, B. Xiao, K. Xiao, Z. Chen, and B. Xia, “Design and analysis of irregular sparse code multiple access,” in Proc. IEEE Int. Conf. Wireless Commun. Signal Process., Nanjing, China, Oct. 2015, pp. 1–5.
[21] C. Yan, G. Kang, and N. Zhang, ‘‘A dimension distance-based SCMA codebook design,’’ IEEE Access, vol. 5, pp. 5471–5479, 2017.
[22] J. Bao, Z. Ma, M. A. Mahamadu, Z. Zhu, and D. Chen, “Spherical codes for SCMA codebook,” in Proc. IEEE 83rd Veh. Technol. Conf. 2016, pp. 1–5.
[23] M. Alam and Q. Zhang, “Designing optimum mother constellation and codebooks for SCMA,” in Proc. IEEE Int. Conf. Commun., Paris, 2017, pp. 1–6.
[24] M. Dabiri and H. Saeedi, “Dynamic SCMA codebook assignment methods: a comparative study,” IEEE Commun. Lett., vol. 22, no. 2, pp. 364–367, Feb. 2018.
[25] D. Zhai, “Adaptive codebook design and assignment for energy saving in SCMA networks,” IEEE Access, vol. 5, pp. 23550–23562, Nov. 2017.
[26] M. Moltafet, N. M. Yamchi, M. R. Javan, and P. Azmi, “Comparison study between PD-NOMA and SCMA,” IEEE Trans. Veh. Tech., vol. 67, no. 2, pp. 1830–1834, Feb 2018.
[27] M. Moltafet, N. Mokari, M. R. Javan, H. Saeedi, and H. Pishro-Nik, “A new multiple access technique for 5G: power domain sparse code multiple access (PSMA),” IEEE Access, vol. 6, pp. 747–759, 2018.
[28] Y. Li, M. Sheng, Z. Sun, Y. Sun, L. Liu, D. Zhai, and J. Li, “Cost-efficient codebook assignment and power allocation for energy efficiency maximization in SCMA networks,” in Proc. IEEE 84th Veh. Technol. Conf., Montreal, Canada, Sept. 2016, pp. 1–5.
[29] Z. Li, W. Chen, F. Wei, F. Wang, X. Xu, and Y. Chen, “Joint codebook assignment and power allocation for SCMA based on capacity with gaussian input,” in Proc. IEEE Int. Conf. Commun. China, Chengdu, China, July 2016, pp. 1–6.
[30] J. Cui, P. Fan, X. Lei, Z. Ma, and Z. Ding, “Downlink power allocation in SCMA with finite-alphabet constraints,” in Proc. IEEE 85th Veh. Technol. Conf., June 2017, pp. 1–5.
[31] C. Yan, N. Zhang, and G. Kang, “Downlink multiple input multiple output mixed sparse code multiple access for 5G system,” IEEE Access, vol. 6, pp. 20837–20847, 2018.
[32] S. Tang, L. Hao, and Z. Ma, “Low complexity joint MPA detection for downlink MIMO-SCMA,” in Proc. IEEE Global Commun. Conf., Washington, DC, 2016, pp. 1–4.
[33] L. Tian, M. Zhao, J. Zhong, and L. Wen, "Resource-selection based low complexity detector for uplink SCMA systems with multiple antennas," IEEE Wireless Commun. Lett., vol. 7, no. 3, pp. 316–319, June 2018.
[34] Y. Li, X. Lei, P. Fan, and D. Chen, “Joint iterative interference alignment and SCMA technique for MIMO-OFDM systems,” in Proc. IEEE 83rd Veh. Technol. Conf., Nanjing, 2016, pp. 1–5.
[35] Z. Wu, C. Zhang, X. Shen, and H. Jiao, “Low complexity uplink SFBC-based MIMO-SCMA joint decoding algorithm,” in Proc. IEEE Int. Conf. Comput. Commun., Chengdu, 2017, pp. 968–972.
[36] J. Bao, Z. Ma, Z. Ding, G. K. Karagiannidis, and Z. Zhu, “On the design of multiuser codebooks for uplink SCMA systems,” IEEE Commun. Lett., vol. 20, no. 10, pp. 1920–1923, Oct. 2016.
[37] S. Han, J. Zhang, C. Guo, and N. Liu, “Full-duplex MIMO relay system design based on SCMA,” in Proc. IEEE Int. Conf. Commun., Paris, 2017, pp. 1–5.
[38] J. Dai, G. Chen, K. Niu, and J. Lin, “Partially active message passing receiver for MIMO-SCMA systems,” IEEE Wireless Commun. Lett., vol. 7, no. 2, pp. 222–225, April 2018.
[39] B. Ling, C. Dong, J. Dai, and J. Lin, “Multiple decision aided successive interference cancellation receiver for NOMA systems,” IEEE Wireless Commun. Lett., vol. 6, no. 4, pp. 498-501, Aug. 2017.
[40] W. Yuan, N. Wu, Q. Guo, Y. Li, C. Xing, and J. Kuang, “Iterative receivers for downlink MIMO-SCMA: message passing and distributed cooperative detection,” IEEE Trans. Wireless Commun., vol. 17, no. 5, pp. 3444–3458, May 2018.
[41] S. H. Wang and C. P. Li, “A low-complexity PAPR reduction scheme for SFBC MIMO-OFDM systems,” IEEE Signal Processing Letters, vol. 16, no. 11, pp. 941-944, Nov. 2009.
[42] C. P. Li, S. H. Wang, and K. C. Chan, “Low Complexity Transmitter Architectures for SFBC MIMO-OFDM Systems,” IEEE Trans. Commun., vol. 60, no. 6, pp. 1712–1718, June 2012.
[43] K. C. Lee, C. P. Li, T. Y. Wang, and H. J. Li, “Performance analysis of dual-hop amplify-and-forward systems with multiple antennas and co-channel interference,” IEEE Trans. Wireless Commun., vol. 13, no. 6, pp. 3070–3087, June 2014.
[44] W. J. Huang, W. W. Hu, C. P. Li, and J. C. Chen, “Novel metric-based PAPR reduction schemes for MC-CDMA systems,” IEEE Trans. Veh. Technol., vol. 64, no. 9, pp. 3982–3989, Sep. 2015.
[45] S. H. Wang, K. C. Lee, and C. P. Li, “A low-complexity architecture for PAPR reduction in OFDM systems with near-optimal performance,” IEEE Trans. Veh. Technol., vol. 65, no. 1, pp. 169–179, Jan. 2016.
[46] S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, ‘‘A novel low-complexity precoded OFDM system with reduced PAPR,’’ IEEE Trans. Signal Process., vol. 63, no. 6, pp. 1366–1376, Mar. 2015.
[47] W. C. Huang, Y. S. Yang, and C. P. Li, “A new pilot architecture for sub-band uplink OFDMA systems,” IEEE Trans. Broadcast., vol. 59, no. 3, pp. 461–470, Sep. 2013.
[48] W. C. Huang, C. P. Li, and H. J. Li, “An investigation into the noise variance and the SNR estimators in imperfectly-synchronized OFDM systems,” IEEE Trans. Commun., vol. 9, no. 3, pp. 1159–1167, Mar. 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code