Responsive image
博碩士論文 etd-0727118-120852 詳細資訊
Title page for etd-0727118-120852
論文名稱
Title
鹵氧化鉍轉換為多孔釩酸鉍光陽極於光電化學水氧化之研究
Synthesis of Porous Bismuth Vanadate Photoanodes by the Conversion of Bismuth Oxyhalides for Photoelectrochemical Water Oxidation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-20
繳交日期
Date of Submission
2018-08-27
關鍵字
Keywords
光陽極、光電化學水分解、鹵氧化鉍、釩酸鉍
Photoanode, Bismuth vanadate, Bismuth oxyhalide, Photoelectrochemical water splitting
統計
Statistics
本論文已被瀏覽 5643 次,被下載 0
The thesis/dissertation has been browsed 5643 times, has been downloaded 0 times.
中文摘要
釩酸鉍擁有適當之能隙、接近氫還原電位之導帶與高穩定,近年來常被使用於光陽極材料,而奈米結構可以減少載子所需擴散距離,本篇研究著重於釩酸鉍光陽極材料,使用兩步驟的方式合成釩酸鉍在導電玻璃(FTO)表面,第一步先用水熱法的方式合成鹵氧化鉍(BiOCl、BiOBr、 Bi4O5I2),再由鹵氧化鉍轉變為釩酸鉍,探討由不同鹵素、改變不同條件,合成出不同表面形貌與不同覆蓋率的鹵氧化物,藉由各種分析方法,包括X光晶體繞射、電子顯微鏡、紫外光可見光光度法與電化學分析了解材料成分、表面結構、吸收率與光電流,使用Bi4O5I2經滴落塗佈法轉換而成之釩酸鉍擁有最高的表面覆蓋率,表面結構成孔洞狀,修飾Co-Bi產氧觸媒後於1.23 伏特 (vs. 可逆氫電極) 的偏壓下可以得到1.48毫安培/平方公分的光電流,表面載子傳輸效率(φ sep)也可提升至88%,載子分離效率(φ ox)也可提升至44.5%,為修飾前之4.3倍,而法拉第效率可以到達60%,最後與光陰極(氧化銅鉍)結合成二極式電化學系統;使用Bi4O5I2經陰離子交換法轉換而成之釩酸鉍為白鎢礦正方晶結構,擁有較差的光催化活性,於1.23伏特(vs. 可逆氫電極)的偏壓下只有0.26 毫安培/平方公分。
Abstract
Bismuth vanadate possesses appropriate band gap, conduction band and high stability. It has been used as photoanode materials recently years. And nanostructure will reduce carrier diffusion distance. This research is focus on bismuth vanadate photoanode. Bismuth vanadate was synthesized by two step methods. First, bismuth oxyhalides (BiOCl、BiOBr、 Bi4O5I2) were synthesized on FTO by hydrothermal method. Second, transform bismuth oxyhalides into bismuth vanadate (BiVO4) by a drop casting method. Different halogens、conditions result in different morphologies and structure BiVO4. Several analytical methods were used, including X-ray diffraction、SEM、UV-vis and electrochemical measurement to analyze the ingredient, surface structure, absorption and photocurrent. BiVO4 which was converted by Bi4O5I2 through drop casting possess highest coverage ratio and porous surface structure. After photodeposition of Co-Bi oxygen evolution catalysts, BiVO4 processes 1.48 mA/cm2 photocurrent at 1.23 V (vs. RHE). Charge transfer efficiency increase to 88% which was 4.3 times higher than the bare BiVO4. Charge separation efficiency reach 53%. Faraday efficiency can reach 60% at 1.23 V (vs. RHE). In the end, connect BiVO4 photoanode and CuBi2O4 photocathode into a tandem cell. BiVO4 converted by Bi4O5I2 through anion exchange is scheelite tetragonal structure which has poor photocatalytic activity. It possesses only 0.26 mA/cm2 photocurrent at 1.23 V (vs. RHE).
目次 Table of Contents
目錄

論文審定書: i
誌謝: ii
摘要: iii
Abstract: iv
目錄 v
圖目錄 viii
表目錄 xi
第一章:前言 1
1-1研究目的 1
1-2光電化學水分解產氫 2
第二章:文獻回顧 7
2-1 釩酸鉍的優缺點 7
2-2改質方法 8
2-2-1表面結構 (Morphology) 8
2-2-2異質接面 (Heterojunction) 9
2-2-3修飾產氧觸媒 (Oxygen evolution catalyst) 9
2-2-4摻雜 (Doping) 11
2-2-5表面電漿子共振 (Surface Plasmon Resonance) 12
2-2-6控制成長晶面 12
2-2-7氫氣、氮氣中退火 12
2-3 晶體結構與電子結構 13
2-4釩酸鉍的合成方法 15
2-4-1旋轉塗佈法 (spin coating) 15
2-4-2陰離子交換法 (anion exchange) 16
2-4-3脈衝雷射沉積 (pulsed laser deposition) 16
2-4-4滴落塗佈法 (drop casting) 16
2-5鹵氧化鉍(氯、溴、碘)合成方法 17
2-5-1氯氧化鉍 17
2-5-2溴氧化鉍 17
2-5-3碘氧化鉍 17
2-6測量與效率評估 18
2-7 重要文獻之光電流比較 21
第三章 實驗方法與步驟 22
3-1實驗藥品 22
3-2使用儀器及原理 24
3-2-1電子顯微鏡 (SEM) 24
3-2-2 X光晶體繞射 (XRD) 24
3-2-3電化學分析儀 25
3-2-4 紫外光-可見光分析儀 (UV) 27
3-2-5 儀器廠牌型號 27
3-3 實驗流程 28
3-4釩酸鉍電極合成 29
3-4-1導電玻璃清洗 29
3-4-2鹵氧化鉍合成 29
3-4-3釩酸鉍滴落塗佈法轉換 30
3-4-4 Co-Bi產氧觸媒修飾 31
3-4-5 FeOOH/NiOOH產氧觸媒修飾 31
3-4-7釩酸鉍陰離子交換法轉換 31
第四章 結果討論 32
4-1結構分析 32
4-1-1鹵氧化物結構分析 32
4-1-2滴落塗佈法之釩酸鉍結構分析 35
4-2成分分析 36
4-2-1鹵氧化鉍成分分析 36
4-2-2滴落塗佈法之釩酸鉍成分分析 38
4-3滴落塗佈法之釩酸鉍紫外-可見光吸收光譜分析 39
4-4滴落塗佈法之釩酸鉍電化學分析 40
4-5 BiVO4-CoBi/CuBi2O4-CuO-CoBi串聯 42
4-5 陰離子交換法 50
4-5-1陰離子交換法之釩酸鉍結構分析 50
4-5-2陰離子交換法之釩酸鉍成分分析 51
4-5-3陰離子交換法之釩酸鉍紫外-可見光吸收光譜分析 52
4-5-4陰離子交換法之釩酸鉍電化學分析 53
4-5-5陰離子交換法之釩酸鉍加快冷卻速度 54
第五章 結果討論 56
第六章 未來工作 57
第七章 參考文獻 58
第八章 補充資料 64
參考文獻 References
1. Barber, J., Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 2009, 38 (1), 185-96.
2. Administration., U. E. I., Primary Energy Production by Source. 2017.
3. Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J., Photoelectrochemical devices for solar water splitting - materials and challenges. Chem. Soc. Rev. 2017, 46 (15), 4645-4660.
4. Lewis, N. S.; Nocera, D. G., Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U.S.A 2006, 103 (43), 15729-35.
5. GARRETT, A. W. C. O. D. B. A. B., The Photovoltaic Effect. 1941.
6. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (version 43). Prog Photovolt Res Appl. 2014, 22 (1), 1-9.
7. Mazloomi, K.; Gomes, C., Hydrogen as an energy carrier: Prospects and challenges. Renew Sustain Energy Rev 2012, 16 (5), 3024-3033.
8. Honda, A. F. K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972.
9. Hisatomi, T.; Kubota, J.; Domen, K., Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43 (22), 7520-35.
10. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar water splitting cells. Chem. Rev. 2010, 110 (11), 6446-73.
11. Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y., Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2009, 9 (6), 2331-6.
12. Ohashi, K.; McCann, J.; Bockris, J. O. M., The photoelectrochemical effect at a p-GaP electrode. Nature 1977.
13. Betley, T. A.; Wu, Q.; Van Voorhis, T.; Nocera, D. G., Electronic design criteria for O-O bond formation via metal-oxo complexes. Inorg. Chem. 2008, 47 (6), 1849-61.
14. Kanan, M. W.; Nocera, D. G., In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321 (5892), 1072-5.
15. Park, Y.; McDonald, K. J.; Choi, K. S., Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42 (6), 2321-37.
16. Su, J.; Guo, L.; Bao, N.; Grimes, C. A., Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 2011, 11 (5), 1928-33.
17. Kalanur, S. S.; Yoo, I.-H.; Seo, H., Fundamental investigation of Ti doped WO3 photoanode and their influence on photoelectrochemical water splitting activity. Electrochim. Acta 2017, 254, 348-357.
18. Sivula, K.; Le Formal, F.; Grätzel, M., Solar water splitting: progress using hematite (α‐Fe2O3) photoelectrodes. ChemSusChem 2011, 4 (4), 432-449.
19. Cesar, I.; Kay, A.; Martinez, J. A. G.; Gratzel, M., Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 2006, 128 (14), 4582-4583.
20. Kim, M.-W.; Kim, K.; Ohm, T. Y.; Joshi, B.; Samuel, E.; Swihart, M. T.; Yoon, H.; Park, H.; Yoon, S. S., Mo-doped BiVO4 nanotextured pillars as efficient photoanodes for solar water splitting. J Alloys Compd. 2017, 726, 1138-1146.
21. Abdi, F. F.; Savenije, T. J.; May, M. M.; Dam, B.; van de Krol, R., The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study. J. Phys. Chem. Lett. 2013, 4 (16), 2752-2757.
22. Lamm, B.; Trześniewski, B. J.; Döscher, H.; Smith, W. A.; Stefik, M., Emerging Postsynthetic Improvements of BiVO4 Photoanodes for Solar Water Splitting. Acs Energy Lett. 2017, 3 (1), 112-124.
23. Choi, J.; Sudhagar, P.; Kim, J. H.; Kwon, J.; Kim, J.; Terashima, C.; Fujishima, A.; Song, T.; Paik, U., WO3/W:BiVO4/BiVO4 graded photoabsorber electrode for enhanced photoelectrocatalytic solar light driven water oxidation. Phys. Chem. Chem. Phys. 2017, 19 (6), 4648-4655.
24. Trzciński, K.; Szkoda, M.; Sawczak, M.; Karczewski, J.; Lisowska-Oleksiak, A., Visible light activity of pulsed layer deposited BiVO4/MnO2 films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation. Appl. Surf. Sci. 2016, 385, 199-208.
25. Lee, M. G.; Kim, D. H.; Sohn, W.; Moon, C. W.; Park, H.; Lee, S.; Jang, H. W., Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation. Nano Energy 2016, 28, 250-260.
26. Ye, H.; Park, H. S.; Bard, A. J., Screening of Electrocatalysts for Photoelectrochemical Water Oxidation on W-Doped BiVO4 Photocatalysts by Scanning Electrochemical Microscopy. J. Phys. Chem. C 2011, 115 (25), 12464-12470.
27. Li, Z.; Luo, W.; Zhang, M.; Feng, J.; Zou, Z., Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 2013, 6 (2), 347-370.
28. Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Gratzel, M.; Klug, D. R.; Durrant, J. R., The role of cobalt phosphate in enhancing the photocatalytic activity of alpha-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 2011, 133 (38), 14868-71.
29. Zhong, M.; Hisatomi, T.; Kuang, Y.; Zhao, J.; Liu, M.; Iwase, A.; Jia, Q.; Nishiyama, H.; Minegishi, T.; Nakabayashi, M.; Shibata, N.; Niishiro, R.; Katayama, C.; Shibano, H.; Katayama, M.; Kudo, A.; Yamada, T.; Domen, K., Surface Modification of CoOx Loaded BiVO4 Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation. J. Am. Chem. Soc. 2015, 137 (15), 5053-60.
30. Kim, T. W.; Choi, K. S., Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343 (6174), 990-4.
31. Seabold, J. A.; Choi, K. S., Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134 (4), 2186-92.
32. Luo, W.; Yang, Z.; Li, Z.; Zhang, J.; Liu, J.; Zhao, Z.; Wang, Z.; Yan, S.; Yu, T.; Zou, Z., Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 2011, 4 (10), 4046.
33. Park, H. S.; Kweon, K. E.; Ye, H.; Paek, E.; Hwang, G. S.; Bard, A. J., Factors in the Metal Doping of BiVO4 for Improved Photoelectrocatalytic Activity as Studied by Scanning Electrochemical Microscopy and First-Principles Density-Functional Calculation. J. Phys. Chem. C 2011, 115 (36), 17870-17879.
34. Kuang, Y. B.; Jia, Q. X.; Nishiyama, H.; Yamada, T.; Kudo, A.; Domen, K., A Front-Illuminated Nanostructured Transparent BiVO4 Photoanode for > 2% Efficient Water Splitting. Adv. Energy. Mater. 2016, 6 (2).
35. Warren, S. C.; Thimsen, E., Plasmonic solar water splitting. Energy Environ. Sci. 2012, 5 (1), 5133-5146.
36. Zhang, X.; Chen, Y. L.; Liu, R. S.; Tsai, D. P., Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76 (4), 046401.
37. Tan, H. L.; Wen, X.; Amal, R.; Ng, Y. H., BiVO4 {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity. J Phys Chem Lett 2016, 7 (7), 1400-5.
38. Han, H. S.; Shin, S.; Kim, D. H.; Park, I. J.; Kim, J. S.; Huang, P.-S.; Lee, J.-K.; Cho, I. S.; Zheng, X., Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ. Sci. 2018, 11 (5), 1299-1306.
39. Cooper, J. K.; Scott, S. B.; Ling, Y.; Yang, J.; Hao, S.; Li, Y.; Toma, F. M.; Stutzmann, M.; Lakshmi, K. V.; Sharp, I. D., Role of Hydrogen in Defining the n-Type Character of BiVO4 Photoanodes. Chem. Mater. 2016, 28 (16), 5761-5771.
40. Kim, T. W.; Ping, Y.; Galli, G. A.; Choi, K. S., Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nat Commun 2015, 6, 8769.
41. Tokunaga, S.; Kato, H.; Kudo, A., Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties. Chem. Mater. 2001, 13 (12), 4624-4628.
42. Hernández, S.; Gerardi, G.; Bejtka, K.; Fina, A.; Russo, N., Evaluation of the charge transfer kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis. Appl. Catal. B- Environ. 2016, 190, 66-74.
43. Byun, S.; Kim, B.; Jeon, S.; Shin, B., Effects of a SnO2 hole blocking layer in a BiVO4-based photoanode on photoelectrocatalytic water oxidation. J. Mater. Chem. A 2017, 5 (15), 6905-6913.
44. Quiñonero, J.; Lana–Villarreal, T.; Gómez, R., Improving the photoactivity of bismuth vanadate thin film photoanodes through doping and surface modification strategies. Appl. Catal. B- Environ. 2016, 194, 141-149.
45. Zhang, J.; Wang, T.; Chang, X.; Li, A.; Gong, J., Fabrication of porous nanoflake BiMOx(M = W, V, and Mo) photoanodes via hydrothermal anion exchange. Chem. Sci. 2016, 7 (10), 6381-6386.
46. Xiong, J.; Cheng, G.; Qin, F.; Wang, R.; Sun, H.; Chen, R., Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation. Chem. Eng. J. 2013, 220, 228-236.
47. Mu, Q.; Zhang, Q.; Wang, H.; Li, Y., Facile growth of vertically aligned BiOCl nanosheet arrays on conductive glass substrate with high photocatalytic properties. J. Mater. Chem. 2012, 22 (33), 16851.
48. Zhang, X.; Ai, Z.; Jia, F.; Zhang, L., Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X = Cl, Br, I) Nanoplate Microspheres. J. Phys. Chem. C 2008, 112 (3), 747-753.
49. McDonald, K. J.; Choi, K.-S., A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 2012, 5 (9), 8553.
50. Wang, M.; Gao, J.; Zhu, G.; Li, N.; Zhu, R.; Wei, X.; Liu, P.; Guo, Q., One-step solvothermal synthesis of Fe-doped BiOI film with enhanced photocatalytic performance. RSC Adv. 2016, 6 (108), 106615-106624.
51. Liu, Q. C.; Ma, D. K.; Hu, Y. Y.; Zeng, Y. W.; Huang, S. M., Various bismuth oxyiodide hierarchical architectures: alcohothermal-controlled synthesis, photocatalytic activities, and adsorption capabilities for phosphate in water. ACS Appl. Mater. Inter. 2013, 5 (22), 11927-34.
52. Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; McFarland, E. W.; Domen, K.; Miller, E. L.; Turner, J. A.; Dinh, H. N., Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 2011, 25 (01), 3-16.
53. Chen, Z.; Dinh, H.; Miller, E., Photoelectrochemical Water Splitting Standards, Experimental Methods, and Protocols. Springer: New York 2013.
54. Ye, K.-H.; Wang, Z.; Gu, J.; Xiao, S.; Yuan, Y.; Zhu, Y.; Zhang, Y.; Mai, W.; Yang, S., Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy Environ. Sci. 2017, 10 (3), 772-779.
55. Shi, X.; Choi, I. Y.; Zhang, K.; Kwon, J.; Kim, D. Y.; Lee, J. K.; Oh, S. H.; Kim, J. K.; Park, J. H., Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat Commun 2014, 5, 4775.
56. He, Y.; Li, L.; Fan, W.; Zhang, C.; Leung, M. K. H., A novel and facile solvothermal-and-hydrothermal method for synthesis of uniform BiVO4 film with high photoelectrochemical performance. J. Alloys Compd. 2018, 732, 593-602.
57. Zhong, D. K.; Choi, S.; Gamelin, D. R., Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO4. J. Am. Chem. Soc. 2011, 133 (45), 18370-7.
58. Joyce, R.; Singh, K.; Varghese, S.; Akhtar, J., Effective cleaning process and its influence on surface roughness in anodic bonding for semiconductor device packaging. Mater. Sci. Semicond. Process. 2015, 31, 84-93.
59. Johansson., A. A. N.; Bröms., P.; Yu., N.; Lupo., D.; Salaneck., W. R., Fluorine Tin Oxide as an Alternative to Indium Tin Oxide in Polymer LEDs. Adv. Mater. 1998.
60. Wang, F.; Subbaiyan, N. K.; Wang, Q.; Rochford, C.; Xu, G.; Lu, R.; Elliot, A.; D'Souza, F.; Hui, R.; Wu, J., Development of nanopatterned fluorine-doped tin oxide electrodes for dye-sensitized solar cells with improved light trapping. ACS Appl. Mater. Inter. 2012, 4 (3), 1565-72.
61. Ding, C.; Shi, J.; Wang, D.; Wang, Z.; Wang, N.; Liu, G.; Xiong, F.; Li, C., Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Phys. Chem. Chem. Phys. 2013, 15 (13), 4589-95.
62. Jiang, X.; Wang, Y.; Herricks, T.; Xia, Y., Ethylene glycol-mediated synthesis of metal oxide nanowires. J. Mater. Chem. 2004, 14 (4), 695.
63. Yue, H.; Zhao, Y.; Ma, X.; Gong, J., Ethylene glycol: properties, synthesis, and applications. Chem. Soc. Rev. 2012, 41 (11), 4218-44.
64. Cooper, J. K.; Gul, S.; Toma, F. M.; Chen, L.; Liu, Y.-S.; Guo, J.; Ager, J. W.; Yano, J.; Sharp, I. D., Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate. J. Phys. Chem. C 2015, 119 (6), 2969-2974.
65. Liu, X.; Xiong, X.; Ding, S.; Jiang, Q.; Hu, J., Bi metal-modified Bi4O5I2 hierarchical microspheres with oxygen vacancies for improved photocatalytic performance and mechanism insights. Catal. Sci. Technol. 2017, 7 (16), 3580-3590.
66. Xia, J.; Ji, M.; Di, J.; Wang, B.; Yin, S.; He, M.; Zhang, Q.; Li, H., Improved photocatalytic activity of few-layer Bi 4O5I2 nanosheets induced by efficient charge separation and lower valence position. J Alloys Compd. 2017, 695, 922-930.
67. Liu, C.; Wang, X. J., Room temperature synthesis of Bi4O5I2 and Bi5O7I ultrathin nanosheets with a high visible light photocatalytic performance. Dalton Trans. 2016, 45 (18), 7720-7.
68. Wiktor, J.; Reshetnyak, I.; Ambrosio, F.; Pasquarello, A., Comprehensive modeling of the band gap and absorption spectrum of BiVO4. Phys. Rev. Materials 2017, 1 (2).
69. Park, Y.; Kang, D.; Choi, K. S., Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes. Phys. Chem. Chem. Phys. 2014, 16 (3), 1238-46.
70. Lutterman, D. A.; Surendranath, Y.; Nocera, D. G., A Self-Healing Oxygen-Evolving Catalyst. J. Am. Chem. Soc. 2009, 131 (11), 3838-3839.
71. Kanan, M. W.; Surendranath, Y.; Nocera, D. G., Cobalt-phosphate oxygen-evolving compound. Chem. Soc. Rev. 2009, 38 (1), 109-14.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code