Responsive image
博碩士論文 etd-0727118-125327 詳細資訊
Title page for etd-0727118-125327
論文名稱
Title
合成具有微結構之氧化銅鉍作為光電化學產氫之光陰極
Synthesis of Microstructured CuBi2O4 Photocathodes for Photoelectrochemical Hydrogen Generation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-20
繳交日期
Date of Submission
2018-08-27
關鍵字
Keywords
p型半導體、光電陰極、光電化學產氫、氧化銅鉍、微結構
CuBi2O4, Microstructure, p-type semiconductor, Photoelectrochemical hydrogen generation, photocatalytic
統計
Statistics
本論文已被瀏覽 5710 次,被下載 0
The thesis/dissertation has been browsed 5710 times, has been downloaded 0 times.
中文摘要
氧化銅鉍(CuBi2O4)是近十年才被應用於光電化學水分解之光陰極的p型半導體,其具備小於1.8電子伏特的能隙,並且有非常正的光電流起始電位(大於可逆氫電極1伏特),可用來作為搭配光陽極材料的理想光電化學性質。但目前實驗上尚未有可觀的光電轉換效率,限制因素尚未充分的了解,但已知的缺點可知有較短的電子傳遞距離,和電解質介面之表面反應動力及穩定性方面的侷限性,因此本研究想藉由製作具有微結構之表面形貌,減小電子傳遞之路徑與提升有效反應點位。
本實驗透過合成於氟參雜的二氧化錫(Fluorine-doped tin oxide,FTO)上具有片狀微結構之碘氧化鉍(Bi4O5I2),以滴落塗佈法法(drop casting)給予銅元素並進行高溫退火,將碘氧化鉍轉換為實驗的目標產物氧化銅鉍,並分別以退火溫度、滴液量來調整實驗的合成過程,藉由掃描式電子顯微鏡了解退火溫度對於合成後的表面結構影響,並透過X-光繞射分析了解各式合成條件搭配下,合成目標產物氧化銅鉍的結果,來尋找到較合適的合成條件。並對各式合成條件下的試片進行線性伏安法的電化學分析,初步了解不同合成條件對於產品的電化學影響,並且比較在有無電子犧牲試劑的電化學系統中的光電流表現,發現在具有電子犧牲的影響下,所量測電位窗範圍內的光電流皆大於不含電子犧牲試劑系統數倍之多,這些實驗結果表示材料表面與電解質的介面具有相當程度的電子傳遞障礙,這引導實驗進行後續表面觸媒修飾的動機,並且在實驗中透過紫外光-可見光之漫反射分析與莫特-蕭特基圖,觀察到氧化銅鉍的能隙與能帶分佈。表面修飾部分則進行二氧化鈦的修飾作為保護層,並以鉑及鈷化合物作為產氫觸媒,最終將與光陽極釩酸鉍結合為二極式電化學系統。
Abstract
Copper bismuth oxide (CuBi2O4) is a p-type semiconductor which band gap is less than 1.8 eV, and the onset potential is positive than 1 V vs. RHE. These good properties make it a promising photocathode material for solar water splitting. However, short charge carrier transport distance, poor surface reaction kinetic and stability limit the efficiency of CuBi2O4.
The synthesis of CuBi2O4 is by drop-casting/heating methods on nanosheet structured Bi4O5I2 electrode. The synthesis procedures were adjusted by changing the annealing temperature and drop casting volumes of solution. The surface morphology differences were characterized by SEM (Scanning electron microscope) measurements, where the compositions of CuBi2O4 were confirmed by XRD (X-ray Diffraction) analysis. The photocurrents were quantified with LSV (Linear Sweep Voltammetry) measurement. There is a four times difference for photocurrent at 0.4 V vs RHE (Reversible Hydrogen Electrode) with and without sacrificial agent. These properties indicate that there are some barriers between electrolyte and bulk material. Band structure were characterized with UV–vis diffuse reflectance and Mott-Schottky plot. Band gap is about 1.8 eV and flat band is at 1.4 V vs RHE. Decorate TiO2 as protection layer and afterward electrodeposition of Pt or Co-Bi as hydrogen evolution catalyst. In the end, connect BiVO4 photoanode and CuBi2O4 photocathode into a tandem cell.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文架構 3
第二章 文獻回顧 4
2.1半導體 4
2.1.1 能隙(Band gap) 4
2.1.2費米能階(Fermi level) 6
2.1.3 p型與n型半導體 7
2.1.4 能帶彎曲(Band bending) 8
2.2 太陽能應用 9
2.2.1 光電化學水分解(Photoelectrochemical water splitting) 10
2.2.2 光電轉化效率13 14
2.3材料介紹 15
2.3.1 CuBi2O4材料性質 15
2.3.2 Bi4O5I2材料性質 18
2.4 改質方法 18
2.4.1 表面微結構(microstructure) 18
2.4.2 異質接面(heterojunction) 19
2.4.3 修飾產氫觸媒 20
第三章 實驗方法 21
3.1 實驗流程 21
3.2 實驗藥品與工具 23
3.3 試片製備 24
3.3.1 基板前處理 24
3.3.2 建構表面微結構 25
3.3.3 表面材料轉換 25
3.3.4 表面修飾TiO2 26
3.3.5 修飾產氫觸媒 26
3.4 模擬光電化學水分解系統實驗介紹 27
3.4.1 光源光譜組成 27
3.4.2 三極式電化學系統 29
3.4.3 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 29
3.5 分析方法 30
3.5.1 掃描式電子顯微鏡(Scanning electron microscope, SEM) 30
3.5.2 能量散佈光譜儀(Energy Dispersive Spectrometer, EDS) 31
3.5.3 X射線繞射分析(X-ray Diffraction, XRD) 32
3.5.4 紫外線-可見光漫反射光譜(UV-Vis Diffuse Reflectance Spectra) 33
3.5.5 氣相層析儀 33
第四章 實驗分析與結果 34
4.1 Bi4O5I2合成結果與分析 34
4.2 CuBi2O4合成實驗結果與分析 37
4.2.1 表面形貌分析 38
4.2.2 X-ray繞射分析 39
4.2.3 LSV電化學分析 42
4.2.4 CuBi2O4 Band structure分析 47
4.2.5 CuBi2O4之載子相關效率 50
4.3 CuBi2O4表面修飾 52
4.3.1 表面修飾TiO2 52
4.3.2 產氫觸媒修飾 53
4.3.3 異質接面 58
4.4 CuBi2O4與BiVO4之二極式系統 59
第五章 總結與未來工作 64
5.1 實驗總結 64
5.2 未來工作 65
參考文獻 66
補充資料 71
參考文獻 References
1. Group, B., BP statistical review of world energy June 2014. BP World Energy Review 2014.
2. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar water splitting cells. Chem Rev 2010, 110 (11), 6446-6473.
3. Maeda, K.; Domen, K., Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1 (18), 2655-2661.
4. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238 (5358), 37-38.
5. Solarska, R.; Królikowska, A.; Augustyński, J., Silver nanoparticle induced photocurrent enhancement at WO3 photoanodes. Angew. Chem. Int. Ed. 2010, 49 (43), 7980-7983.
6. Thomas, G.; Ropital, F., Influence des gaz sur la synthese du tungstate de fer Fe2WO6 II. Etude des mecanismes solide-solide. Mater. Chem. Phys. 1984, 11 (6), 563-575.
7. Tilley, S. D.; Cornuz, M.; Sivula, K.; Grätzel, M., Light‐Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis. Angew. Chem. Int. Ed. 2010, 122 (36), 6549-6552.
8. Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E., Highly active oxide photocathode for photoelectrochemical water reduction. Nature Mater. 2011, 10 (6), 456-461.
9. Paracchino, A.; Mathews, N.; Hisatomi, T.; Stefik, M.; Tilley, S. D.; Grätzel, M., Ultrathin films on copper (I) oxide water splitting photocathodes: a study on performance and stability. Energy Env. Sci. 2012, 5 (9), 8673-8681.
10. Azevedo, J.; Steier, L.; Dias, P.; Stefik, M.; Sousa, C.; Araujo, J.; Mendes, A.; Graetzel, M.; Tilley, S., On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy Env. Sci. 2014, 7 (12), 4044-4052.
11. Cherepy, N. J.; Liston, D. B.; Lovejoy, J. A.; Deng, H.; Zhang, J. Z., Ultrafast studies of photoexcited electron dynamics in γ-and α-Fe2O3 semiconductor nanoparticles. J. Phys. Chem. B 1998, 102 (5), 770-776.
12. Patil, R.; Kelkar, S.; Naphade, R.; Ogale, S., Low temperature grown CuBi2O4 with flower morphology and its composite with CuO nanosheets for photoelectrochemical water splitting. J. Mater. Chem. A 2014, 2 (10), 3661-3668.
13. Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J., Photoelectrochemical devices for solar water splitting - materials and challenges. Chem Soc Rev 2017, 46 (15), 4645-4660.
14. Giménez, S.; Bisquert, J., Photoelectrochemical Solar Fuel Production. Springer: 2016.
15. Linsebigler, A. L.; Lu, G.; Yates Jr, J. T., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95 (3), 735-758.
16. Kittel, C., Introduction to solid state physics. Wiley: 2005.
17. Valeur, B.; Berberan-Santos, M. N., Molecular fluorescence: principles and applications. John Wiley & Sons: 2012.
18. Subramanian, V.; Wolf, E. E.; Kamat, P. V., Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. JACS 2004, 126 (15), 4943-4950.
19. Gärtner, W. W., Depletion-layer photoeffects in semiconductors. Phys. Rev. 1959, 116 (1), 84.
20. Hisatomi, T.; Kubota, J.; Domen, K., Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 2014, 43 (22), 7520-35.
21. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38 (1), 253-278.
22. Ong, E.; Kwei, G.; Robinson, R.; Ramakrishna, B.; Von Dreele, R., Long-range antiferromagnetic ordering in Bi 2CuO4. Phys. Rev. B 1990, 42 (7), 4255.
23. Henmi, C., Kusachiite, CuBi2O4, a new mineral from Fuka, Okayama Prefecture, Japan. Mineralogical Magazine 1995, 59 (3), 545-548.
24. Berglund, S. P.; Abdi, F. F.; Bogdanoff, P.; Chemseddine, A.; Friedrich, D.; van de Krol, R., Comprehensive Evaluation of CuBi2O4 as a Photocathode Material for Photoelectrochemical Water Splitting. Chem. Mater. 2016, 28 (12), 4231-4242.
25. Arai, T.; Konishi, Y.; Iwasaki, Y.; Sugihara, H.; Sayama, K., High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. J. Comb. Chem. 2007, 9 (4), 574-581.
26. Berglund, S. P.; Lee, H. C.; Núñez, P. D.; Bard, A. J.; Mullins, C. B., Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution. PCCP 2013, 15 (13), 4554-4565.
27. Hahn, N. T.; Holmberg, V. C.; Korgel, B. A.; Mullins, C. B., Electrochemical synthesis and characterization of p- CuBi2O4 thin film photocathodes. J. Phys. Chem. C 2012, 116 (10), 6459-6466.
28. Seger, B.; Castelli, I. E.; Vesborg, P. C.; Jacobsen, K. W.; Hansen, O.; Chorkendorff, I., 2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs. Energy Env. Sci. 2014, 7 (8), 2397-2413.
29. Seitz, L. C.; Chen, Z.; Forman, A. J.; Pinaud, B. A.; Benck, J. D.; Jaramillo, T. F., Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. ChemSusChem 2014, 7 (5), 1372-1385.
30. Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M., Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 2010, 25 (1), 3-16.
31. Park, H. S.; Lee, C.-Y.; Reisner, E., Photoelectrochemical reduction of aqueous protons with a CuO| CuBi2O4 heterojunction under visible light irradiation. PCCP 2014, 16 (41), 22462-22465.
32. Hossain, M. K.; Samu, G. F.; Gandha, K.; Santhanagopalan, S.; Liu, J. P.; Janáky, C.; Rajeshwar, K., Solution Combustion Synthesis, Characterization, and Photocatalytic Activity of CuBi2O4 and Its Nanocomposites with CuO and α-Bi2O3. J. Phys. Chem. C 2017, 121 (15), 8252-8261.
33. Kang, D.; Hill, J. C.; Park, Y.; Choi, K.-S., Photoelectrochemical Properties and Photostabilities of High Surface Area CuBi2O4 and Ag-Doped CuBi2O4 Photocathodes. Chem. Mater. 2016, 28 (12), 4331-4340.
34. Yamada, K.; Fukuda, R.; Yamamoto, K.; Sonoda, T.; Nakamura, H.; Yamane, H., Effect of p-Type Semiconductor Electrode on Photovoltaic Properties in n/p Tandem-Type Dye-Sensitized Solar Cell. Mol. Cryst. Liq. Cryst. Sci.
Technol. 2012, 566 (1), 193-201.
35. Cao, D.; Nasori, N.; Wang, Z.; Mi, Y.; Wen, L.; Yang, Y.; Qu, S.; Wang, Z.; Lei, Y., p-Type CuBi2O4 : an easily accessible photocathodic material for high-efficiency water splitting. J. Mater. Chem. A 2016, 4 (23), 8995-9001.
36. Park, H. S.; Lee, C. Y.; Reisner, E., Photoelectrochemical reduction of aqueous protons with a CuO| CuBi2O4 heterojunction under visible light irradiation. PCCP 2014, 16 (41), 22462-5.
37. Abdulkarem, A. M.; Li, J.; Aref, A. A.; Ren, L.; Elssfah, E. M.; Wang, H.; Ge, Y.; Yu, Y., CuBi2O4 single crystal nanorods prepared by hydrothermal method: Growth mechanism and optical properties. Mater. Res. Bull. 2011, 46 (9), 1443-1450.
38. Sharma, G.; Zhao, Z.; Sarker, P.; Nail, B. A.; Wang, J.; Huda, M. N.; Osterloh, F. E., Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4nanocrystals. J. Mater. Chem. A 2016, 4 (8), 2936-2942.
39. Patil, R.; Kelkar, S.; Naphade, R.; Ogale, S., Low temperature grown CuBi2O4 with flower morphology and its composite with CuO nanosheets for photoelectrochemical water splitting. J. Mater. Chem. A 2014, 2 (10), 3661-3668.
40. Oh, W. D.; Lua, S. K.; Dong, Z.; Lim, T. T., Rational design of hierarchically-structured CuBi2O4 composites by deliberate manipulation of the nucleation and growth kinetics of CuBi2O4 for environmental applications. Nanoscale 2016, 8 (4), 2046-54.
41. Arai, T.; Yanagida, M.; Konishi, Y.; Iwasaki, Y.; Sugihara, H.; Sayama, K., Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation. J. Phys. Chem. C 2007, 111 (21), 7574-7577.
42. Nakabayashi, Y.; Nishikawa, M.; Nosaka, Y., Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production. Electrochim. Acta 2014, 125, 191-198.
43. Cao, D.; Nasori, N.; Wang, Z.; Mi, Y.; Wen, L.; Yang, Y.; Qu, S.; Wang, Z.; Lei, Y., p-Type CuBi2O4: an easily accessible photocathodic material for high-efficiency water splitting. J. Mater. Chem. A 2016, 4 (23), 8995-9001.
44. Sharma, G.; Zhao, Z.; Sarker, P.; Nail, B. A.; Wang, J.; Huda, M. N.; Osterloh, F. E., Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p- CuBi2O4 nanocrystals. J. Mater. Chem. A 2016, 4 (8), 2936-2942.
45. Liu, C.; Wang, X. J., Room temperature synthesis of Bi4O5I2 and Bi5O7I ultrathin nanosheets with a high visible light photocatalytic performance. Dalton Trans 2016, 45 (18), 7720-7.
46. Xia, J.; Ji, M.; Di, J.; Wang, B.; Yin, S.; He, M.; Zhang, Q.; Li, H., Improved photocatalytic activity of few-layer Bi 4 O 5 I 2 nanosheets induced by efficient charge separation and lower valence position. J. Alloys Compd. 2017, 695, 922-930.
47. Lin, Y.; Yuan, G.; Liu, R.; Zhou, S.; Sheehan, S. W.; Wang, D., Semiconductor nanostructure-based photoelectrochemical water splitting: a brief review. Chem. Phys. Lett. 2011, 507 (4), 209-215.
48. Osterloh, F. E., Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42 (6), 2294-2320.
49. Conway, B.; Salomon, M., Electrochemical reaction orders: Applications to the hydrogen-and oxygen-evolution reactions. Electrochim. Acta 1964, 9 (12), 1599-1615.
50. Bookbinder, D. C.; Lewis, N. S.; Bradley, M. G.; Bocarsly, A. B.; Wrighton, M. S., Photoelectrochemical reduction of N, N'-dimethyl-4, 4'-bipyridinium in aqueous media at p-type silicon: sustained photogeneration of a species capable of evolving hydrogen. JACS 1979, 101 (26), 7721-7723.
51. Bocarsly, A. B.; Bookbinder, D. C.; Dominey, R. N.; Lewis, N. S.; Wrighton, M. S., Photoreduction at illuminated p-type semiconducting silicon photoelectrodes. Evidence for Fermi level pinning. JACS 1980, 102 (11), 3683-3688.
52. Heller, A.; Aspnes, D.; Porter, J.; Sheng, T.; Vadimsky, R., Transparent metals preparation and characterization of light-transmitting platinum films. J. Phys. Chem. 1985, 89 (21), 4444-4452.
53. Heller, A., Hydrogen evolving solar cells. Cat. Rev. - Sci. Eng. 1984, 26 (3-4), 655-681.
54. Heller, A.; Aharon-Shalom, E.; Bonner, W.; Miller, B., Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst. JACS 1982, 104 (25), 6942-6948.
55. Paasch, K. M. Power Electronic System for Multi-MW PV sites. Syddansk Universitet. Mærsk Mc-Kinney Møller Instituttet, 2016.
56. Tu, S.; Lu, M.; Xiao, X.; Zheng, C.; Zhong, H.; Zuo, X.; Nan, J., Flower-like Bi4O5I2/Bi5O7I nanocomposite: facile hydrothermal synthesis and efficient photocatalytic degradation of propylparaben under visible-light irradiation. RSC Adv. 2016, 6 (50), 44552-44560.
57. Zhong, D. K.; Choi, S.; Gamelin, D. R., Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO4. J Am Chem Soc 2011, 133 (45), 18370-7.
58. Wang, D.; Li, R.; Zhu, J.; Shi, J.; Han, J.; Zong, X.; Li, C., Photocatalytic Water Oxidation on BiVO4 with the Electrocatalyst as an Oxidation Cocatalyst: Essential Relations between Electrocatalyst and Photocatalyst. The Journal of Physical Chemistry C 2012, 116 (8), 5082-5089.
59. Ding, C.; Shi, J.; Wang, D.; Wang, Z.; Wang, N.; Liu, G.; Xiong, F.; Li, C., Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Phys Chem Chem Phys 2013, 15 (13), 4589-95.
60. Cobo, S.; Heidkamp, J.; Jacques, P. A.; Fize, J.; Fourmond, V.; Guetaz, L.; Jousselme, B.; Ivanova, V.; Dau, H.; Palacin, S.; Fontecave, M.; Artero, V., A Janus cobalt-based catalytic material for electro-splitting of water. Nat Mater 2012, 11 (9), 802-7.
61. He, C.; Wu, X.; He, Z., Amorphous Nickel-Based Thin Film As a Janus Electrocatalyst for Water Splitting. The Journal of Physical Chemistry C 2014, 118 (9), 4578-4584.
62. Li, J.; Griep, M.; Choi, Y.; Chu, D., Photoelectrochemical overall water splitting with textured CuBi2O4 as a photocathode. Chem Commun (Camb) 2018, 54 (27), 3331-3334.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code