Responsive image
博碩士論文 etd-0727118-144503 詳細資訊
Title page for etd-0727118-144503
論文名稱
Title
以奈米壓印技術於雙壓電層結構上製作高頻表面聲波濾波器
Fabrication of high frequency SAW filters using double-layered piezoelectric structure with nanoimprint technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-19
繳交日期
Date of Submission
2018-08-27
關鍵字
Keywords
表面聲波元件、雙壓電層結構、奈米壓印技術、鈮酸鋰、鉭酸鋰、氮化鋁
surface acoustic wave, double-layered piezoelectric structure, nanoimprint, LiNbO3, LiTaO3, aluminum nitride
統計
Statistics
本論文已被瀏覽 5631 次,被下載 0
The thesis/dissertation has been browsed 5631 times, has been downloaded 0 times.
中文摘要
近年來表面聲波元件廣泛應用於通訊產品上,且持續往高頻化的趨勢發展,操作頻率均大幅提高至GHz以上,因此,表面聲波元件之高頻化與微小化之研究便成為重要的課題。本研究利用壓電薄膜於壓電基板上所製作之表面聲波元件,具提高元件操作頻率之特點,未來可應用於輕薄短小的通訊產品中。
本研究以IDT/AlN/LiNbO3及IDT/AlN/LiTaO3雙壓電層結構研製高頻表面聲波元件,以提升中心頻率及聲波傳遞速率。為研製出此高頻元件,本研究先於壓電基板上利用射頻磁控濺鍍法沉積氮化鋁(AlN)薄膜,藉由不同濺鍍條件:沉積時間、濺鍍功率、腔體壓力的調變,來製作不同結晶性的氮化鋁薄膜,並探討其濺鍍參數與薄膜的關係,得到最佳濺鍍參數。藉由SEM與XRD對AlN薄膜進行分析,所得之薄膜具有高C軸優選取向及柱狀結構。
元件製作分別利用奈米壓印技術在AlN/LiNbO3及電子束微影技術在AlN/LiTaO3結構上定義出指叉電極(IDT),製作IDT/AlN/LiNbO3及IDT/AlN/ LiTaO3表面聲波元件。AlN/LiNbO3結構所使用之奈米壓印製程係以PMMA A6作為高分子轉介層,使用壓力4.6 MPa,溫度180°C,時間5分鐘進行壓印,之後以RIE蝕刻PMMA殘餘層,並以蒸鍍鋁金屬作為電極,完成元件之製作,所得之元件中心頻率為2.04GHz,波速為5304m/s;在AlN/LiTaO3結構部分是以電子束微影技術來完成SAW元件之製作,所得之元件中心頻率為2.02GHz,波速為5252m/s。
Abstract
In recent years, surface acoustic wave components have been widely used in communication product with high-frequency product. Besides, the operating frequency has been greatly increased to be above gigahertz. Therefore, the researches on high frequency and minimization of SAW devices have become important issues. In this study, the SAW devices were fabricated on double-layered piezoelectric substrates to increase the operating frequency, and can be applied to light and small dimensional communication products in the future.
In this study, in order to increase the center frequency (ƒ0) and phase velocity (Vp), the IDT/AlN/LiNbO3 and IDT/AlN/LiTaO3 structures were developed. Firstly, aluminum nitride thin films were deposited on LiNbO3 and LiTaO3 substrates by RF magnetron sputtering. In order to obtain the optimum sputtering parameters, the sputtering conditions such as: deposition time, RF power, and chamber pressure were adjusted. The relationships between the sputtering parameters and the varied crystalline of aluminum nitride thin films were investigated in this study. The AlN thin films were analyzed by SEM and XRD, which showed that the obtained AlN thin films existed the high c-axis orientation and the columnar structure.
To fabricate the SAW devices, the interdigitated electrodes (IDT) were defined on the AlN/LiTaO3 structure by electron beam lithography. For the AlN/LiNbO3 structure, the IDT is defined by nanoimprint technology. In the nanoimprinting process, the PMMA A6 was used to be the polymer transfer layer. The IDT structure on the AlN/LiNbO3 was imprinted at 180°C for 5min with imprint pressure of 4.6MPa. After the imprinting process, the residue layer of the PMMA was etched by RIE process and then the Al electrode was deposited by thermal evaporation. The SAW deice with the center frequency of 2.04 GHz and the phase velocity of 5304 m/s on an AlN/LiNbO3 substrate was obtained. On the other hand, the center frequency of 2.02 GHz and wave velocity of 5252 m/s of the SAW device with IDT/AlN/LiTaO3 structure by electron beam lithography were obtained.
目次 Table of Contents
摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1.1 研究背景與動機 1
1.2 表面聲波元件 3
1.3 奈米壓印技術 6
1.4 研究內容 8
第二章 理論分析 9
2.1 42˚ Y-cut鉭酸鋰(LiTaO3)晶體結構與特性 9
2.2 Z-cut鈮酸鋰(LiNbO3)晶體結構與特性 10
2.3 氮化鋁(AlN)結構與特性 12
2.4 壓電效應(piezoelectric effect) 15
2.5 壓電材料 16
2.6 薄膜成長機制 16
2.7 反應性磁控濺鍍原理 18
2.7.1 輝光放電原理 18
2.7.2 射頻濺射 19
2.7.3 磁控濺射 20
2.7.4 反應性濺射 21
2.8 表面聲波元件理論和種類 22
2.8.1 表面聲波元件基本設計與特性 23
2.8.2 表面聲波元件種類 24
2.9 表面聲波元件參數性質 27
2.9.1 聲波波速 27
2.9.2 插入損耗 27
第三章 實驗 29
3.1 實驗流程 29
3.2 基板清洗 31
3.3 濺鍍系統與薄膜沉積 32
3.3.1 射頻磁控濺鍍系統 32
3.3.2 熱蒸鍍系統 34
3.4 薄膜物性分析 35
3.4.1 X光繞射分析 35
3.4.2 掃描式電子顯微鏡分析 37
3.5 電子束微影製程 38
3.5.1硬模(Si)製作IDT電極圖形 39
3.5.2 AlN/LiTaO3結構製作IDT電極圖形 40
3.6 感應式耦合電漿蝕刻系統 41
3.6.1 金屬鋁蝕刻 41
3.6.2 硬模(Si)蝕刻製程 42
3.7 奈米熱壓印製程 44
3.8 反應式離子蝕刻系統 46
3.9 SAW元件網路分析儀 48
第四章 結果與討論 49
4.1 氮化鋁薄膜之特性分析 49
4.1.1 AlN/LiTaO3結構下之AlN薄膜分析 49
4.1.2 AlN/LiNbO3結構下之AlN薄膜分析 55
4.2 奈米元件壓印製作與製程改善 61
4.3 乾式蝕刻之製程改善 63
4.4 表面聲波濾波器之頻率響應 65
4.4.1 AlN/LiNbO3之SAW元件頻率響應 65
4.4.2 AlN/LiTaO3之SAW元件頻率響應 66
第五章 結論 68
參考文獻 70
參考文獻 References
[1] 葉昱昕, 太陽能電池與手機, 2013.
[2] 張景淳, 表面聲波元件模型之建立與應用, 中原大學電子工程研究所學位論文, pp. 1-81, 2005.
[3] 彭冠庭, 以 IDT/ZnO/AlN/Si3N4/Si 結構研製雙頻表面聲波元件, 中山大學電機工程學系研究所學位論文, pp. 1-110, 2014.
[4] Rayleigh L., On waves propagated along the plane surface of an elastic solid, Proceedings of the London Mathematical Society, vol.1, pp. 4-11, 1885.
[5] Shen J., Investigation of allergy biosensor for human IgE detection using Sezawa-mode surface acoustic wave devices, 2012.
[6] 王宏文, 淺談表面聲波感測器, 工業材料-精密陶瓷專輯, vol.89, 1994.
[7] Okamura S., Nishi H., Inada T., Hashimoto H., AlN capped annealing of Si implanted semi‐insulating GaAs, Applied Physics Letters, vol.40, pp. 689-690, 1982.
[8] Bertolet D. C., Liu H., Rogers Jr J. W., Initial stages of AlN thin‐film growth on alumina using trimethylamine alane and ammonia precursors, Journal of applied physics, vol.75, pp. 5385-5390, 1994.
[9] Inbar I., Cohen R. E., Comparison of the electronic structures and energetics of ferroelectric LiNbO3 and LiTaO3, Physical Review B, vol.53, pp. 1193, 1996.
[10] Uehara K., Nakamura H., Nakase H., Tsubouchi K., AlN epitaxial film with atomically flat surface for GHz-band SAW devices, Ultrasonics Symposium Proceedings, 2002.
[11] Yoshida S., Misawa S., Fujii Y., Takada S., Hayakawa H., Gonda S., Itoh A., Reactive molecular beam epitaxy of aluminium nitride, Journal of Vacuum Science and Technology, vol.16, pp. 990-993, 1979.
[12] Wauk M., Winslow D., Vacuum deposition of AlN acoustic transducers, Applied Physics Letters, vol.13, pp. 286-288, 1968.
[13] Penza M., De RiccardisM. F., Mirenghi L., Tagliente M. A., Verona E., Low temperature growth of rf reactively planar magnetron-sputtered AlN films, Thin Solid Films, vol.259, pp. 154-162, 1995.
[14] Stedile F. C., Baumvol I. J. R., Schreiner W. H., Freire Jr F. L., Study on direct current reactive sputtering deposition of aluminum nitride thin films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.10, pp. 3272-3277, 1992.
[15] Ito S., Fujioka H., Ohta J., Takahashi H., Oshima M., Growth of AlN on lattice-matched MnO substrates by pulsed laser deposition, Thin Solid Films, vol.435, pp. 215-217, 2003.
[16] Okano H., Takahashi Y., Tanaka T., Shibata K., Nakano S., Preparation of c-axis oriented AlN thin films by low-temperature reactive sputtering, Japanese journal of applied physics, vol.31, pp. 3446, 1992.
[17] Guo L. J., Nanoimprint lithography: methods and material requirements, Advanced materials, vol.19, pp. 495-513, 2007.
[18] Stephen Y. Chou, Peter R. Krauss, Wei Zhang, Lingjie Guo, Lei Zhuang, Sub-10 nm imprint lithography and applications, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol.15, pp. 2897-2904, 1997.
[19] 高國陞, 鈮酸鋰基板上沈積氮化鋁薄膜及其表面聲波元件之應用, 國立中山大學電機工程研究所碩士論文, 1999.
[20] Chung C. J., The Study of Temperature Compensation with SiO2 Films on Proton-Exchanged LiNbO3 and LiTaO3 for Surface Acoustic Wave, 2003.
[21] Matthias B., Remeika J., Ferroelectricity in the ilmenite structure, Physical Review, vol.76, pp. 1886, 1949.
[22] 余素楨, 晶體之結構與性質, 國立編譯館, 1993.
[23] 歐天凡, 沉積條件對氮化鋁薄膜壓電系數及機電偶和係數之影響, 中山大學電機工程學系研究所學位論文, 2004.
[24] Weis R., Gaylord T., Lithium niobate: summary of physical properties and crystal structure, Applied Physics A, vol.37, pp. 191-203, 1985.
[25] Gao G., Frequency and temperature characteristics of surface acoustic wave devices., 哈尔滨工业大学深圳研究生院应用数学, 2005.
[26] Rodriguez-Clemente R., Aspar B., Azema N., Armas B., Combescure C., Durand J., Figueras A., Morphological properties of chemical vapour deposited AlN films. Journal of crystal growth, vol.133, pp. 59-70, 1993.
[27] Ruiz E., Alvarez S., Alemany P., Electronic structure and properties of AlN. Physical Review B, vol.49, pp. 7115, 1994.
[28] Hyun-Ho Kim, Byeong-Kwon Ju, Yun-Hi Lee, Si-Hyung Lee, Jeon-Kook Lee, Soo-Won Kim, A noble suspended type thin film resonator (STFR) using the SOI technology, Sensors and Actuators A: Physical, vol.89, pp.255-258, 2001.
[29] 顏豐明, 高熱傳導率氮化鋁基板材料之簡介, 材料與社會, 1993.
[30] 林上懷, 於鉭酸鋰基板上製備氮化鋁薄膜以應用於表面聲波元件, 中山大學電機工程學系研究所學位論文, pp. 1-83, 2016.
[31] Ballato A., Piezoelectricity: history and new thrusts, IEEE: Ultrasonics Symposium, Proceedings, 1996.
[32] Hankel W. G., Sachs Abh., Piezoelectric, Applied Sciences, vol.12, 1881.
[33] 吳朗, 電子陶瓷:壓電陶瓷, 全欣資訊圖書股份有限公司, 1994.
[34] Lin-Sheng Huo, Dong-Dong Chen, Qing-Zhao Kong, Hong-Nan Li, Gang-Bing Song, Smart washer - A piezoceramic-based transducer to monitor looseness of bolted connection, Smart Materials and Structures, 2017.
[35] Su Q. X., Kirby P., Komuro E., Imura M., Zhang Q., Whatmore R., Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films, IEEE Transactions on Microwave Theory and Techniques, vol.49, pp. 769-778, 2001.
[36] 廖珮淳, 以AlN/Si3N4/Si結構製作第四代通訊用表面聲波元件, 中山大學電機工程學系研究所學位論文, 2013.
[37] 施敏, 李明逵, 半導體元件物理與製作技術, 2013.
[38] Berry R. W. H., Peter M. Harris, Murray T., Thin film technology, D. VAN NOSTRAND CO., INC., PRINCETON, N. J., 1968.
[39] Kern W., Thin Film Processes II, Thin film processes II, vol.2, pp. 209, 1991.
[40] Janczak-Bienk E., Jensen H., Sørensen G., The influence of the reactive gas flow on the properties of AIN sputter-deposited films, Materials Science and Engineering: A, vol.140, pp. 696-701, 1991.
[41] Campbell C., Surface acoustic wave devices and their signal processing applications., Elsevier., 2012
[42] Gardner J., Varadan W., Vijay K., Microsensors, MEMS and smart devices, John Wiley & Sons, Inc., 2001.
[43] Campbell C., Surface acoustic wave devices for mobile and wireless communications, Academic press., 1998.
[44] 蕭价伶, 非接觸式光學檢測應用於FPW元件量測技術, 國立中央大學光電科學研究所碩士論文, 2004.
[45] 李其源, 濕蝕刻晶片厚度即時監控之新穎方法, 臺灣大學機械工程學研究所學位論文, pp. 1-137, 2004.
[46] 盧建彰, 應用微帶線結構於表面聲波濾波器之研究, 成功大學微電子工程研究所學位論文, pp. 1-62, 2003.
[47] 簡俊謙, 高曜煌, 表面聲波元件之設計及其在寬頻振盪器之應用, 1999.
[48] Shih-Hung Tsai, Mau-Phon Houng, Yeong-Her Wang, A design rule of surface acoustic wave filter, Journal of Marine Science and Engineering, vol.34, 2002.
[49] Ruyen Ro, Shi-Yuan Chang, Rey-Chue Hwang, Dale Huipin Lee, Identification of ionic solutions using a SAW liquid sensor, Source: Proceedings of the National Science Council, Republic of China, Part A: Physical Science and Engineering, vol.23, 1999.
[50] 朱慕道, 表面聲波元件原理與應用, 新電子光電元件專輯, 1994.
[51] Webster J. G., Pallás-Areny R., Sensors and signal conditioning, Wiley New York, 1991.
[52] Matthews H., Surface wave filters: Design, construction, and use, New York, Wiley-Interscience, 1977.
[53] Slobodnik A. J., Szabo T. L., Laker K., Miniature surface-acoustic-wave filters, Proceedings of the IEEE, vol.67, pp. 129-146, 1979.
[54] Slobodnik A. J., Thomas J. R., SAW device, Slobodnik, 1979.
[55] 汪建民, 材料分析, 中國材料科學學會發行, 1998.
[56] Pei L., Balls A., Tippets C., Abbott J., Linford M. R., Hu J., David D. Allred, Richard R. Vanfleet, Davis R. C., Polymer molded templates for nanostructured amorphous silicon photovoltaics, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.29, 2011.
[57] 高國陞, 表面聲波元件之頻率及溫度特性之研究, 國立中山大學電機工程學系博士班學位論文, 2004.
[58] Shew B. Y., Huang J. L., Lii D. F., Effects of rf bias and nitrogen flow rates on the reactive sputtering of TiA1N films, Thin Solid Films, vol.293, pp. 212-219, 1997.
[59] 鄭建銓, 質子交換鈮酸鋰與射頻濺鍍氮化鋁薄膜之表面聲波特性研究, 中山大學電機工程研究所, 1996.
[60] Beck M., Graczyk M., Maximov I., Sarwe E.-L., Ling T. G. I., Keil M., Montelius L., Improving stamps for 10 nm level wafer scale nanoimprint lithography, Microelectronic Engineering, vol.61, pp. 441-448, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code