Responsive image
博碩士論文 etd-0727118-154839 詳細資訊
Title page for etd-0727118-154839
論文名稱
Title
以相圖控制氣孔在固化過程中之形狀
Controlling pore shape in solid during solidification from the universal phase diagrams
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
32
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-26
繳交日期
Date of Submission
2018-08-27
關鍵字
Keywords
相圖、接觸角、氣泡半徑、系統狀態、系統設計、固化速度
phase diagrams, states of a system, design processes of system, solidification rat, base radius of the bubble cap, contact angle
統計
Statistics
本論文已被瀏覽 5647 次,被下載 0
The thesis/dissertation has been browsed 5647 times, has been downloaded 0 times.
中文摘要
本研究以相圖描述氣孔在固化過程之形狀變化。如同熱力學所述,相圖具有辨識系統狀態及系統設計過程的優勢。本研究發現存在三張唯一相圖,可以找出接觸角,氣泡半徑,固化速度,以描述氣孔之成型過程。計算結果顯示發現與實驗值相吻合,因此可以由選擇相圖中的路徑做出最佳預測與控制。
Abstract
This study shows that there exist three universal and unique phase diagrams to describe general development of the pore shape in solid. Like thermodynamics, phase diagrams have advantages to generally identify the states and design processes of a system. In this study, three phase diagrams are found to be under dimensionless coordinate systems of dimensionless apex radius, contact angle, and base radius of the bubble cap, as well as solidification rate, contact angle, and growth rate of base radius. The computed results of the development of the pore shape agree with experimental data. The pore shape in solid thus can be optimistically predicted and controlled by choosing a desired path on phase diagrams.
目次 Table of Contents
論文審定書 i
中文摘要 ii
Abstract iii
目錄 iv
圖次 vi
符號說明 vi
第一章 緒論 1
1.1 研究背景 1
1.2 本論文研究內容簡介 1
1.3 論文架構 2
第二章 理論分析與模型設定 3
2.1模型區域設定 3
2.1.1模型幾何 3
2.2.2研究模擬之流程圖 5
2.2模型之統御方程式 6
2.2.1 壓力方程式與半徑之關係 6
2.1.2半徑與接觸角之關係 8
2.1.3體積方程式 9
2.1.4氣泡高度方程式 9
2.1.5固化高度方程式 9
第三章 結果與討論 10
3.1模擬條件與說明 10
3.2基本性質的相圖 10
3.3模擬結果與討論 12
3.3.1模擬與實驗之比較 12
3.3.2 壓力與半徑變化 14
3.3.3接觸角與半徑之變化 15
3.3.3相圖 15
3.4誤差驗證 17
第四章 結論與未來展望 19
參考文獻 20
參考文獻 References
[1] S. Kou, Welding Metallurgy, Wiley, New York, 1987.
[2] C.D. Sulfredge, L.C. Chow, K.A. Tagavi, Artificial dispersal of void patterns in
unidirectional freezing, Exp. Heat. Transf. 6 (1993) 389–409.
[3] J.E. Ramirez, B. Han, S. Liu, Effect of welding variables and solidification
substructure on weld metal porosity, Metall. Mater. Trans. A 25 (1994) 2285–2294.
[4] H. Zhao, D.R. White, T. DebRoy, Current issues and problems in laser welding of automotive aluminum alloys, Int. Mater. Rev. 44 (1999) 238–266.
[5] P.B. Oliete, J.I. Peña, Study of the gas inclusions in Al2O3/Y3Al5O12 and Al2O3/Y3Al5O12/ZrO2 eutectic fibers grown by laser floating zone, J. Cryst. Growth 304
(2007) 514–519.
[6] H. Hu, C. Xu, Y. Zhao, R. Shaeffer, K.J. Ziegler, J.N. Chung, Modification and
enhancement of cryogenic quenching heat transfer by a nanoporous surface, Int. J.Heat Mass Transf. 80 (2015) 636–643.
[7] W.D. Huang, L.L. Wang, Solidification researches using transparent model
materials - a review, Sci. China-Technol. Sci. 55 (2012) 377–386.
[8] M. Torkar, F. Tehovnik, B. Arh, M. Jenko, B. Sarler, Z. Rajic, Microstructure
characteristics of the model spring steel 51CrV4, Mater. Technol. 48 (2014)
537–543.
[9] J.W. Elmer, J. Vaja, H.D. Carlton, R. Pong, The effect of Ar and N2 shielding gas on laser weld porosity in steels, and nickel, Weld. J. 94(2015)(313-s-325-s).

[10] H. Nakajima, Fabrication, properties and application of porous metals with
directional pores, Prog. Mater. Sci. 52 (2007) 1091–1173.
[11] [M. Tane, H. Nakajima, Influence of ultrasonic agitation on pore formation and
growth during unidirectional solidification of water-carbon dioxide solution, Mater. Trans. 47 (2006) 2183–2187.
[12] T. Inada, T. Hatakeyama, F. Takemura, Gas-storage ice grown form water
containing mircobubbles, Int. J. Refrig. 32 (2009) 462–471.
[13] M. Langer, S. Westermann, K. Walter Anthony, K. Wischnewski, J. Boike, Frozen ponds: production and storage of methane during the arctic winter in a lowland tundra landscape in northern Siberia, Lena River Delta, Biogeosciences 12(2015) 977–990.
[14] A.I. Fedorchenko, A.A. Chernov, Exact solution of the problem of gas segregation in the process of crystallization, Int. J. Heat Mass Transf. 46 (2003) 915–919.
[15] P.S. Wei, C.C. Huang, K.W. Lee, Nucleation of bubbles on a solidification frontexperiment and analysis, Metall. Mater. Trans. B 34 (2003) 321–332.
[16] G.G. Poon, B. Peters, A stochastic model for nucleation in the boundary layer
during solvent freeze-concentration, Cryst. Growth Des. 13 (2013) 4642–4647.
[17] Y. Liu, Y.X. Li, J. Wan, H.W. Zhang, Evaluation of porosity in lotus-type porous magnesium fabricated by metal/gas eutectic unidirectional solidification, Mater. Sci. Eng. A. 402 (2005) 47–54.
[18] J.S. Park, S.K. Hyun, S. Suzuki, H. Nakajima, Effect of transference velocity and
hydrogen pressure on porosity and poremorphology of lotus-type porous copper
fabricated by a continuous casting technique, Acta Mater. 55 (2007) 5646–5654.

[19] Wei, P. S., Huang, C. C., Wang, Z. P., Chen, K. Y., Lin, C. H., “Growths of Bubble/Pore Sizes in Solid During Solidification—An in Situ Measurement and Analysis,” J. Cryst. Growth, 270 (2004) 662–673.
[20] S.F. Jones, G.M. Evans, K.P. Galvin, The cycle of bubble production from a gas
cavity in a supersaturated solution, Adv. Colloid Interface Sci. 80 (1999) 51–84.
[21] P.S. Wei, Y.K. Kuo, S.H. Chiu, C.Y. Ho, Shape of a pore trapped in solid during
solidification, Int. J. Heat Mass Transf. 43 (2000) 263–280.
[22] P.S. Wei, C.Y. Ho, An analytical self-consistent determination of a bubble with a
deformed cap trapped in solid during solidification, Metall. Mater. Trans. B 33
(2002) 91–100.
[23] M.C. Cox, A.V. Anilkumar, R.N. Grugel, C.P. Lee, Effect of step-wise change in
processing pressure on isolated pore growth during controlled directional solidification
in small channels, J. Cryst. Growth 311 (2009) 327–336.
[24] C.P. Lee, A.V. Anilkumar, M.C. Cox, C.B. Lioi, R.N. Grugel, Evolution of elongated pores at the melt-solid interface during controlled directional solidification, Acta Mater. 61 (2013) 3752–3757.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.174.248
論文開放下載的時間是 校外不公開

Your IP address is 18.221.174.248
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code