Responsive image
博碩士論文 etd-0727118-224657 詳細資訊
Title page for etd-0727118-224657
論文名稱
Title
不同電極材料應用於背蝕型薄膜體聲波濾波器及其頻率響應之優化
The study of FBAR filters using various electrode materials and optimization of the frequency response
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-19
繳交日期
Date of Submission
2018-08-28
關鍵字
Keywords
反應式離子蝕刻、快速熱退火、氧化鋅、體聲波濾波器、壓電、頻率響應
Frequency response, Rapid thermal annealing (RTA), Reactive ion etching (RIE), Bulk acoustic wave filter (BAW filter), Zinc oxide (ZnO), Piezoelectric
統計
Statistics
本論文已被瀏覽 5684 次,被下載 0
The thesis/dissertation has been browsed 5684 times, has been downloaded 0 times.
中文摘要
壓電聲波元件中,體聲波濾波元件之損耗較表面聲波濾波元件低,也較不受操作環境之溫度改變而影響其元件表現,因此,在高頻通訊系統上成為一個相當重要的元件。本研究採用階梯式晶體濾波器作為背蝕型體聲波濾波器之結構,以氧化鋅作為壓電材料,並以不同之金屬材料(Al、Mo、Pt)作為底電極及頂電極,互相搭配製作出九種體聲波濾波器結構,由電性量測結果得知最佳化之元件結構為Pt/Ti/ZnO/Pt/Ti,量測得中心頻率為2.35GHz、插入損失(Insertion Loss, IL)為-5.86dB,有效機電耦合係數(Effective Electromechanical Coupling Coefficient, keff2)為7.05%。
接著,調變串聯及並聯共振器之頂電極厚度,並利用上述所製作出之結構搭配快速熱退火(Rapid Thermal Annealing, RTA)製程進行元件特性之改善,改善後之元件中心頻率為2.49GHz、IL為-1.87dB、keff2為7.02%,由實驗結果得知,經RTA後之背蝕型體聲波濾波器元件,得到顯著改善,IL提升至-2dB以內,具有良好之元件特性。
另外,本研究亦藉由改變電極與壓電層厚度來得到較高之頻率,並利用快速熱退火改善結晶特性及以反應式離子蝕刻製程將背部空腔殘餘矽去除之方法來製備元件,得到中心頻率為3.65GHz、IL及keff2分別為-9.65dB及6.17%。
Abstract
In the piezoelectric acoustic devices, the bulk acoustic wave filter (BAW filter) has smaller loss than surface acoustic wave filter (SAW filter). Besides, BAW filter is less affected by the environment temperature. Therefore, BAW filter exhibits an important role in high frequency communication system. In this study, the ladder-type filters based on back-etched thin film bulk acoustic resonator (TFBAR) were fabricated by zinc oxide (ZnO) thin film and varied electrode material such as aluminum (Al), molybdenum (Mo), Platinum (Pt). Among the proposed 9 structures of TFBAR filters, the Pt/Ti/ZnO/Pt/Ti structure was performed the best characteristic with center frequency of 2.35 GHz, insertion loss (IL) of -5.86 dB and effective electromechanical coupling coefficient (keff2) of 7.05%.
Then, by adjusting the top electrode thickness and adopting the rapid thermal annealing (RTA) processing to optimize the frequency response, the experimental results show that TFBAR filter has a significant improvement with center frequency of 2.49 GHz, IL of -1.87 dB and keff2 of 7.02%.
The characteristics of IL of TFBAR filter has been application in communication system. On the other hand, both the thickness of top electrode and ZnO piezoelectric layer were reduced combined with RTA process and removed the residual Si by reactive ion etching (RIE) to obtain a higher frequency band. With the reduction of the thickness of thin films and the treatment of RTA and RIE, the center frequency was measured to be 3.65 GHz, and the IL and keff2 were -9.65 dB and 6.17%, respectively.
目次 Table of Contents
中文審定書 i
英文審定書 ii
摘要 iii
Abstract v
圖目錄 x
表目錄 xiii
第一章 前言 1
1.1 研究背景與動機 1
1.2 薄膜體聲波濾波器 2
1.3 研究內容 9
第二章 理論分析 11
2.1 壓電理論 11
2.1.1 壓電現象 11
2.1.2 壓電效應 12
2.1.3 壓電材料 13
2.2 薄膜特性分析 16
2.2.1氧化鋅之結構與特性 16
2.2.2鋁結構與特性 18
2.2.3鉬結構與特性 19
2.2.4鉑結構與特性 19
2.3反應性射頻磁控濺鍍原理 20
2.3.1輝光放電 21
2.3.2磁控濺鍍 22
2.3.3射頻濺鍍 26
2.3.4反應性濺鍍 26
2.4鍍膜之沉積機制 28
2.5蝕刻 30
2.5.1濕式蝕刻 30
2.5.2乾式蝕刻 31
2.6 快速熱退火 32
2.7 薄膜體聲波共振器 32
2.7.1有效機電耦合係數(keff2) 34
2.8 薄膜體聲波濾波器 34
2.8.1 階梯式濾波器 34
第三章 實驗流程與方法 38
3.1 實驗流程 38
3.2 黃光微影製程 40
3.3 薄膜製程 44
3.4 濕式蝕刻(Wet etching) 52
3.5 快速熱退火(Rapid Thermal Annealing, RTA) 52
3.6 實驗步驟 53
3.6.1 RCA晶圓清洗 53
3.6.2低壓化學氣相沉積 (Low-pressure Chemical Vapor Deposition, LPCVD) 54
3.6.3 反應式離子蝕刻 (Reactive Ion Etching, RIE) 55
3.6.4 底電極製作 55
3.6.5 壓電層製作 55
3.6.6 頂電極製作 55
3.6.7 以濕式蝕刻製作背部空腔 56
3.7 薄膜分析 57
3.7.1 X光繞射(X-Ray Diffraction, XRD)分析 57
3.7.2 原子力顯微鏡(Atomic Force Microscopy, AFM)分析 59
3.7.3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)分析 60
3.7.4 三維輪廓儀(3D Alpha-Step Profilometer, α-step) 61
3.8 元件頻率響應量測 61
第四章 結果與討論 63
4.1 電極薄膜分析 63
4.1.1 鋁(Aluminum, Al)電極特性分析 64
4.1.2 鉬(Molybdenum, Mo)電極特性分析 68
4.1.3 鉑(Platinum, Pt)電極特性分析 73
4.2 壓電薄膜分析 75
4.2.1 氧化鋅成長於鋁底電極之特性分析 75
4.2.2 氧化鋅成長於鉬底電極之特性分析 81
4.2.3 氧化鋅成長於鉑底電極之特性分析 82
4.3 元件量測頻率響應分析 84
4.3.1 以鋁作為底電極之薄膜體聲波濾波器元件結構 84
4.3.2 以鉬作為底電極之薄膜體聲波濾波器元件結構 87
4.3.3 以鉑作為底電極之薄膜體聲波濾波器元件結構 89
4.4 改善頻率響應結果分析 92
第五章 結論 97
參考文獻 99
參考文獻 References
1. 蔡宗儒,以氧化鋅壓電薄膜製作薄膜體聲波濾波器,國立中山大學電機工程研究所碩士論文,2008。
2. 卓明,壓電力學,全華圖書股份有限公司公司,2003。
3. Newell, W., Face-mounted piezoelectric resonators. Proceedings of the IEEE, vol. 53, pp. 575-581, 1965.
4. Lakin, K. M., Thin Film Resonator and Filters, IEEE International Freq. Contr. Symp., pp. 895-906, 1999.
5. Kim, S. H., Kim, J. H., Lee, J. K., Lee, S. H., Yoon, K. H. Bragg reflector thin film resonator using aluminium nitride deposited by rf sputtering. in Microwave Conference, 2000 Asia-Pacific, IEEE, pp. 1535-1538, 2000.
6. Lakin, K. M., Kline, G. R., McCarron, K. T., Development of miniature filters for wireless applications. IEEE Transactions on Microwave Theory and Techniques, vol. 43, pp. 2933-2939, 1995.
7. Lakin, K. M., Belsick, J., McDonald, J. F., McCarron, K. T., High performance stacked crystal filters for GPS and wide bandwidth applications. in Ultrasonics Symposium, IEEE, vol. 1, pp. 833-838, 2001.
8. Khine, L., Wong, L. Y., Soon, J. B., Tsai, M. L. J., FBAR Resonators with sufficient high Q for RF filter implementation. In Advanced Materials Research, Trans Tech Publications, vol. 254, pp. 70-73, 2011.
9. Ye, J., Gu, S., Zhu, S., Chen, T., Hu, L., Qin, F., Zhang, R., Shi, Y., Zheng, Y., The growth and annealing of single crystalline ZnO films by low-pressure MOCVD. Journal of Crystal Growth, vol. 243, pp. 151-156, 2002.
10. Fu, Z., Lin, B., Zu, J., Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition. Thin Solid Films, vol. 402, pp. 302-306, 2002.
11. Baik, D., Cho, S., Application of sol-gel derived films for ZnO/n-Si junction solar cells. Thin Solid Films, vol. 354, pp. 227-231, 1999.
12. Sakurai, K., Kanehiro, M., Nakahara, K., Tanabe, T., Fujita, S., Fujita, S., Effects of oxygen plasma condition on MBE growth of ZnO. Journal of crystal growth,vol. 209, pp. 522-525, 2000.
13. 游雋弘,GHz 級薄膜型塊體聲波共振器的研製與特性探討,國立成功大學電機工程學系學位論文,2002。
14. Curie, J., Curie, P., Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull. soc. min. de France,vol. 3, pp. 90, 1880.
15. 朱建國,孫小松,李衛,電子與光電子材料,北京國防工業出版社,,2007。
16. Su, Q. X., Kirby, P., Komuro, E., Imura, M., Zhang, Q., Whatmore, R., Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films. IEEE Transactions on Microwave Theory and Techniques, vol. 49, pp. 769-778, 2001.
17. Fierro, J. L. G., Metal oxides: chemistry and applications. CRC press, 2005.
18. Wu, H. Y., Cheng, X. L., Hu, C. H., Zhou, P., The structure and thermodynamic properties of zinc oxide with wurtzite and rocksalt structure under high pressures. Physica B: Condensed Matter, vol. 405, pp. 606-612, 2010.
19. Albertsson, J., Abrahams, S., Kvick, Å., Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO. Acta Crystallographica Section B, vol. 45, pp. 34-40, 1989.
20. Kisi, E. H., Elcombe, M. M., u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Crystallographica Section C, vol. 45, pp. 1867-1870, 1989.
21. Garcia-Martinez, O., Rojas, R. M., Vila, E., De Vidales, J. M., Microstructural characterization of nanocrystals of ZnO and CuO obtained from basic salts. Solid State Ionics, vol. 63, pp. 442-449, 1993.
22. Kolesnik, S., Dabrowski, B., Mais, J., Structural and magnetic properties of transition metal substituted ZnO. Journal of applied physics, vol. 95, pp. 2582-2586, 2004.
23. Sawada, H., Wang, R., Sleight, A.W., An electron density residual study of zinc oxide. Journal of Solid State Chemistry, vol. 122, pp. 148-150, 1996.
24. Hartnagel, H., Dawar, A. L., Jain, A. K., Jagadish, C., Semiconducting transparent thin films, Bristol, Institute of Physics, pp. 181, 1995.
25. Ma, T. Y., Shim, D. K., Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films. Thin Solid Films, vol. 410, pp. 8-13, 2002.
26. Igasaki, Y., Saito, H., The effects of zinc diffusion on the electrical and optical properties of ZnO: Al films prepared by rf reactive sputtering. Thin Solid Films, vol. 199, pp. 223-230, 1991.
27. Nunes, P., Costa, D., Fortunato, E., Martins, R., Performances presented by zinc oxide thin films deposited by rf magnetron sputtering. Vacuum, vol. 64, pp. 293-297, 2002.
28. Qiu, D. J., Wu, H. Z., Feng, A. M., Lao, Y. F., Chen, N. B., Xu, T. N., Annealing effects on the microstructure and photoluminescence properties of Ni-doped ZnO films. Applied surface science, vol. 222, pp. 263-268, 2004.
29. 謝錦龍,電漿與極光,國家奈米元件實驗室奈米通訊,vol. 20,pp. 36-37,2013。
30. Berry, R. W., Hall, P. M., Harris, M. T., Thin film technology. D. VAN NOSTRAND CO., INC., PRINCETON, N. J., 706 P, 1968.
31. 曾泰銓,濺鍍鈀與氧化鈀薄膜應用於奈米裂隙電極製作研究,國立交通大學材料科學與工程學,2006。
32. Janczak-Bienk, E., Jensen, H., Sørensen, G., The influence of the reactive gas flow on the properties of AIN sputter-deposited films. Materials Science and Engineering, A, vol. 140, pp. 696-701, 1991.
33. Shinoki, F., A. Itoh, Mechanism of rf reactive sputtering. Journal of Applied Physics, vol. 46, pp. 3381-3384, 1975.
34. Westwood, W. D., Reactive Sputter Deposition Handbook of Plasma Processing Technology. Springer - Verlag Berlin Heidelberg: U. S. A. 1992.
35. Smith, D. L., Thin-film deposition: principles and practice. McGraw-hill New York etc, vol. 108, 1995.
36. 莊達人,VLSI 製造技術,高立圖書股份有限公司,1995 年。
37. 吳朗,電子陶瓷:壓電陶瓷,全欣資訊,pp. 7,1994。
38. Grujicic, M., Lai, S., Multi-length scale modeling of chemical vapor deposition of titanium nitride coatings. Journal of materials science, vol. 36(12), pp. 2937-2953, 2001.
39. Gilmer, G. H., Huang, H., de la Rubia, T. D., Dalla Torre, J., Baumann, F., Lattice Monte Carlo models of thin film deposition. Thin Solid Films, vol. 365, pp. 189-200, 2000.
40. Marlo, M., Milman, V., Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals. Physical Review B, vol. 62, pp. 2899, 2000.
41. Joel, F. R., Bulk Acoustic Wave Theory and Devices. Artech House, London, 1988.
42. 林宗賢,微小型體聲波元件之設計與製造,國立清華大學動力機械工程學系學位論文,2006。
43. Lin, R. C., Kao, K. S., Cheng, C. C., Chen, Y. C., Deposition and structural properties of RF magnetron-sputtered ZnO thin films on Pt/Ti/SiNx/Si substrate for FBAR device. Thin Solid Films, vol. 516(16), pp. 5262-5265, 2008.
44. Lee, H. C., Park, J. Y., Lee, K. H., Bu, J. U., Preparation of highly textured Mo and AlN films using a Ti seed layer for integrated high-Q film bulk acoustic resonators. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 22, pp. 1127-1133, 2004.
45. 劉彥宏,以雙壓電層研製固態微型諧振器,國立中山大學電機工程學系研究所學位論文,2015。
46. 李秉叡,應用於 3 GHz 頻段之薄膜體聲波共振器之研究,國立中山大學電機工程學系研究所學位論文,2017。
47. 林麗娟,X 光繞射原理及其應用,X 光材料分析技術與應用專題,1994。
48. 李其紘,原子力顯微鏡的基本介紹,科學研習,國立台灣科學教育館,第 52-5卷,2013。
49. 羅聖全,研發奈米科技的基本工具之一電子顯微鏡介紹,SEM。
50. 鄭建銓,質子交換鈮酸鋰與射頻濺鍍氮化鋁薄膜之表面聲波特性研究,國立中山大學電機工程研究所,1996。
51. Tüzemen, S., Xiong, G., Wilkinson, J., Mischuck, B., Ucer, K. B., Williams, R. T., Production and properties of p–n junctions in reactively sputtered ZnO. Physica B: Condensed Matter, vol. 308, pp. 1197-1200, 2001.
52. Shew, B. Y., Huang, J. L., Lii, D. F., Effects of rf bias and nitrogen flow rates on the reactive sputtering of TiA1N films. Thin Solid Films, vol. 293, pp. 212-219, 1997.
53. 高國陞,表面聲波元件之頻率及溫度特性之研究,國立中山大學電機工程學系博士班學位論文,2004。
54. Kamohara, T., Akiyama, M., Ueno, N., Nonaka, K., Tateyama, H., Growth of highly c-axis-oriented aluminum nitride thin films on molybdenum electrodes using aluminum nitride interlayers. Journal of crystal growth, vol. 275, pp. 383-388, 2005.
55. Dong, L., Srolovitz, D., Mechanism of texture development in ion-beam-assisted deposition. Applied physics letters, vol. 75, pp. 584-586, 1999.
56. Liu, X. Y., Bennema, P., Theoretical consideration of the growth morphology of crystals. Physical Review B, vol. 53, pp. 2314, 1996.
57. Pao, Y. H., Elastic waves in solids. Journal of applied mechanics, vol. 50, pp. 1152-1164, 1983.
58. Kajikawa, Y., Noda, S., Komiyama, H., Preferred orientation of chemical vapor deposited polycrystalline silicon carbide films. Chemical Vapor Deposition, vol. 8, pp. 99-104, 2002.
59. Akiyama, M., Nagao, K., Ueno, N., Tateyama, H., Yamada, T., Influence of metal electrodes on crystal orientation of aluminum nitride thin films. Vacuum, vol. 74, pp. 699-703, 2004.
60. Lee, J. B., Jung, J. P., Lee, M. H., Park, J. S., Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs. Thin Solid Films, vol. 447, pp. 610-614, 2004.
61. Hu, S. Y., Lee, Y. C., Lee, J. W., Huang, J. C., Shen, J. L., Water, W., The structural and optical properties of ZnO/Si thin films by RTA treatments. Applied Surface Science, vol. 254, pp. 1578-1582, 2008.
62. 劉吉卿,以兩階段濺鍍法沉積氧化鋅壓電薄膜於薄膜體聲波共振器之應用,國立中山大學電機工程學系研究所學位論文,2006。
63. 陳信樺,薄膜體聲波濾波器之製作之製作及其特性優化,國立中山大學電機工程學系研究所學位論文,2009。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code