Responsive image
博碩士論文 etd-0727118-230340 詳細資訊
Title page for etd-0727118-230340
論文名稱
Title
萃取薄膜材料熱膨脹係數之系統開發
Development of the system for Determining the Thermal Expansion Coefficient of Thin Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-23
繳交日期
Date of Submission
2018-08-30
關鍵字
Keywords
熱膨脹係數、吸附電壓值、經驗公式、測試件
Test-key, pull-in voltage, empirical formula, coefficient of thermal expansion
統計
Statistics
本論文已被瀏覽 5638 次,被下載 1
The thesis/dissertation has been browsed 5638 times, has been downloaded 1 times.
中文摘要
熱膨脹係數是影響薄膜元件運作效能的其中一項重要熱性質。因此,本研究建立一套萃取薄膜材料熱膨脹係數系統,透過電訊號量測的方式萃取出薄膜材料之熱膨脹係數。此系統的最大優勢為,只需要使用一個微型橋狀梁結構作為標準測試件,並依序使用穩定電流加熱測試件產生熱變形,以及量測吸附電壓值(Vpull-in (th)),最後再將吸附電壓值帶入本研究所建立之熱膨脹係數經驗公式計算,即可獲得薄膜材料之熱膨脹係數。本研究亦透過電容變化量測實驗,獲得標準測試件所能承受之極限電流值(Icr),以及達最大電容變化量時所需之時間(tst),這將可確實掌握標準測試件受電流加熱時所產生之熱變形趨勢,免去施加過大的電流以及過長的時間加熱測試件,導致測試件於吸附電壓量測前即損壞。此外,本研究亦透過最佳化參數設計實驗,定義出最佳的加熱電流以及加熱時間參數,所獲得矽的平均熱膨脹係數為(2.58±0.04)×10-6 K-1,而且與標準值2.60×10-6 K-1[1]僅有0.77%的誤差。因此,本研究所建立之檢測系統,未來能夠實際應用於薄膜元件生產線之快速檢測需求。
Abstract
The coefficient of thermal expansion (CTE) is the important thermal property that affects the performance of thin film components. Therefore, this study establishes a detection system for extracting the CTE which is using the electro-signal as the extracting method. The main advantage of the system is to take a fixed-fixed beam structure as the standard test-key and sequentially using the steady current to heat the test-key to perform thermal deformation and then measuring the pull-in voltage to extracting the CTE. Measuring the capacitance difference during the heating test-key process is also be done for obtaining the critical current (Icr) and the time (tst) required to reach the maximum capacitance difference, it can prevent the damage of the test-key before pull-in voltage measurement. Due to these results, the damage caused by overheating could be prevented before pull-in occurs. Finally, this study also defines the optimized experimental parameters for heating current and the range of heating time. Extracting result of the average value of the CTE of silicon is (2.58±0.04)×10-6 K-1 and only 0.77% error compared to the standard value (2.60×10-6 K-1)[1]. Therefore, the detection system can be practically applied to the production line in the future.
目次 Table of Contents
論文審定書……………………………………………………………………………………………………………….i
誌謝………………………………………………………………………………………………………………………….ii
中文摘要…………………………………………………………………………………………………………………iv
Abstract…………………………………………………………………………………………………………………….v
目錄…………………………………………………………………………………………………………………………vi
圖次……………………………………………………………………………………………………………………….viii
表次……………………………………………………………………………………………………………………….…x
第一章 導論…………………………………………………………………………………………………………….1
1.1 前言…………………………………………………………………………………………………………………..1
1.2 萃取薄膜材料熱膨脹係數之技術現況探討……………………………………………………..2
1.3 研究動機與目標……………………………………………………………………………………………..15
1.4 論文架構…………………………………………………………………………………………………………16
第二章 萃取薄膜材料熱膨脹係數之系統開發…………………………………………………….18
2.1 系統架設…………………………………………………………………………………………………………18
2.2 微型橋標準測試件製作………………………………………………………………………………….19
2.3 微型橋標準測試件之電訊號量測…………………………………………………………………..22
2.3.1 電容變化量測………………………………………………………………………………………………22
2.3.2 吸附電壓量測………………………………………………………………………………………………26
第三章 萃取薄膜材料熱膨脹係數之演算法建立………………………………………………..27
3.1 微型橋標準測試件之電容變化量測結果……………………………………………………….27
3.2 經驗公式擬合………………………………………………………………………………………………….35
3.2.1 熱變形量經驗公式……………………………………………………………………………………….35
3.2.2 熱膨脹係數經驗公式…………………………………………………………………………………..40
第四章 結果與討論………………………………………………………………………………………………41
4.1 最佳化實驗參數設計探討……………………………………………………………………………..41
4.1.1 加熱時間參數分析………………………………………………………………………………………41
4.1.2 加熱電流參數分析………………………………………………………………………………………47
4.1.3 最佳化實驗參數量測結果…………………………………………………………………………..51
4.2 再現性分析……………………………………………………………………………………………………..51
4.3 新穎性分析……………………………………………………………………………………………………..53
第五章 結論與未來展望……………………………………………………………………………………….56
5.1 結論…………………………………………………………………………………………………………………56
5.2 未來展望…………………………………………………………………………………………………………57
參考文獻………………………………………………………………………………………………………………..58
附錄一……………………………………………………………………………………………………………………60
附錄二……………………………………………………………………………………………………………………62
參考文獻 References
[1] M. E. Straumanis, P. Borgeaud, W. J. James, "Perfection of the Lattice of Dislocation‐Free Silicon, Studied by the Lattice‐Constant and Density Method", Journal of Applied Physics, vol. 32, pp. 1382-1384, 1961.
[2] Y. H. Seo, K. Hwang, H. C. Park, and K. H. Jeong, "Electrothermal MEMS fiber scanner for optical endomicroscopy", Optics Express, vol. 24, pp. 3903-3909, Feb 2016.
[3] H.-P. Wei, B. Han, B. D. Youn, H. Shin, I. Kim, and H. Moon, "Assembly yield prediction of plastically encapsulated packages with a large number of manufacturing variables by advanced approximate integration method", Microelectronics Reliability, vol. 78, pp. 319-330, 2017.
[4] W. L. Fang, H. C. Tsai, C. Y. Lo, "Determining thermal expansion coefficients of thin films using micromachined cantilevers", Sensors and Actuators a-Physical, vol. 77, pp. 21-27, Sep 1999.
[5] W. L. Fang, C. Y. Lo, "On the thermal expansion coefficients of thin films", Sensors and Actuators a-Physical, vol. 84, pp. 310-314, Sep 2000.
[6] C. A. Jong, T. S. Chin, W. L. Fang, "Residual stress and thermal expansion behavior of TaOxNy films by the micro-cantilever method", Thin Solid Films, vol. 401, pp. 291-297, Dec 2001.
[7] C. H. Pan, "A simple method for determining linear thermal expansion coefficients of thin films", Journal of Micromechanics and Microengineering, vol. 12, pp. 548-555, Sep 2002.
[8] Z. D. Wang, X. X. Zhao, S. Q. Jiang, and J. J. Lu, "Determining thermal expansion coefficient of stressed thin films at low temperature", Polymer Testing, vol. 24, pp. 839-843, Oct 2005.
[9] B. Pan, H. M. Xie, T. Hua, and A. Asundi, "Measurement of coefficient of thermal expansion of films using digital image correlation method", Polymer Testing, vol. 28, pp. 75-83, Feb 2009.
[10] A. E. Mag-isa, S. M. Kim, J. H. Kim, H. J. Lee, and C. S. Oh, "Out-of-Plane CTE Measurement Method for Freestanding Thin Films", Experimental Mechanics, vol. 53, pp. 1017-1024, Jul 2013.
[11] R. M. Pocratsky, M. P. de Boer, "Determination of thin film coefficient of thermal expansion and residual strain from freestanding fixed-fixed beams", Journal of Vacuum Science & Technology B, vol. 32, p. 6, Nov 2014.
[12] J. J. Lin, Y. L. Wu, C. F. Yang, and W. W. Wang, "Measurement of thermal expansion coefficient of INVAR foil using atomic force microscopy", Measurement, vol. 47, pp. 373-378, Jan 2014.
[13] J. H. Chae, J. Y. Lee, S. W. Kang, "Measurement of thermal expansion coefficient of poly-Si using microgauge sensors", Sensors and Actuators a-Physical, vol. 75, pp. 222-229, Jun 1999.
[14] H. Y. Liu, Z. F. Zhou, W. H. Li, and Q. A. Huang, "An online test structure for the thermal expansion coefficient of surface micromachined polysilicon beams by a pull-in approach", Journal of Micromechanics and Microengineering, vol. 22, p. 8, May 2012.
[15] H. Y. Liu, W. H. Li, Z. F. Zhou, and Q. A. Huang, "In situ test structures for the thermal expansion coefficient and residual stress of polysilicon thin films", Journal of Micromechanics and Microengineering, vol. 23, p. 9, Jul 2013.
[16] L. Haiyun, W. Lei, "Measurements of thermal conductivity and the coefficient of thermal expansion for polysilicon thin films by using double-clamped beams", Journal of Micromechanics and Microengineering, vol. 28, 2018.
[17] 鄭崇華、蔡欣昌、方維倫。2003。量測薄膜應變之方法及結構。中華民國發明專利第574499號。
[18] 黄庆安、胡冬梅、李伟华。2008。表面加工多晶硅薄热膨胀系数的电测试方法。中華人民共和國發明專利第CN 101246136A號。
[19] 黄庆安、张宇星、李伟华。2008。测量多晶硅薄膜热膨胀系数的测量结构及其测量方法。中華人民共和國發明專利第CN 100368795C號。
[20] W. C. Chuang, C. W. Wang, W. C. Chu, P. Z. Chang, and Y. C. Hu, "The fringe capacitance formula of microstructures", Journal of Micromechanics and Microengineering, vol. 22, p. 7, Feb 2012.
[21] M. Chiao, L. W. Lin, "Self-buckling of micromachined beams under resistive heating", Journal of Microelectromechanical Systems, vol. 9, pp. 146-151, Mar 2000.
[22] S. D. Senturia, Microsystem Design. Springer, Boston, MA, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code