Responsive image
博碩士論文 etd-0728103-120957 詳細資訊
Title page for etd-0728103-120957
論文名稱
Title
光纖連接器之終端模組受熱循環負載下應力及疲勞壽命之研究
The Study on the Stress and Fatigue Life in Ferrule-Epoxy-Fiber Module of Optical Fiber Connector under Thermal Cycling
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-28
繳交日期
Date of Submission
2003-07-28
關鍵字
Keywords
光纖連接器、疲勞壽命、熱循環
fatigue life, thermal cycling, optical fiber connector
統計
Statistics
本論文已被瀏覽 5651 次,被下載 3775
The thesis/dissertation has been browsed 5651 times, has been downloaded 3775 times.
中文摘要
本論文主要在討論光纖連接器之終端模組在不同長度的套管中經熱循環過程後,套管的長度及環氧樹脂層的厚度對於模組的應力、應變及疲勞壽命的影響。文中利用MARC有限元素分析軟體,以熱-彈-塑性的模式模擬模組內之套管-環氧樹脂-光纖3種不同材質經熱循環試驗後模組之力學行為。文中發現在模組長度改變的情況下,若欲降低模組的內部應力及應變,則套管的長度愈長愈好。但若考慮模組的壽命,則以環氧樹脂層的厚度改變時所造成的影響會比改變長度時來的大;且當厚度愈厚時,其壽命會顯著地增加。文中並建議最佳之套管長度可設計於7.89mm ~10.5mm之間。
Abstract
The effects of different ferrule length and epoxy layer thickness of the module of optical fiber connector under thermal cycling are investigated in this thesis. The finite element method package, MSC. MARC, is used in this study and the coupled thermal-elastic-plastic model is employed in the analysis. The mechanical behavior and life prediction with different length of ferrule and thickness of epoxy layer are considered. It is shown that the thickness of epoxy layer has the major effect on the life of the module. The stress and strain in the fiber and epoxy layer are decreasing with increasing of ferrule length, and the life of the module is increasing with increasing of thickness of epoxy layer. Finally, we recommend the ferrule length can be designed between 7.89mm ~10.5mm.
目次 Table of Contents
目錄
謝誌………………………………………………………………………I
目錄……………………………………………………………………II
圖目錄…………………………………………………………………V
表目錄……………………………………………………………VIII
符號說明………………………………………………………………X
中文摘要……………………………………………………………XII
英文摘要……………………………………………………………XIII

第一章 緒論………………………………………………………1
1-1 前言………………………………………………………………1
1-2 光纖連接器簡介………………………………………………3
1-3 文獻回顧………………………………………………………7
1-4 組織與章節………………………………………………………9
第二章 理論基礎…………………………………………………12
2-1 有限元素法…………………………………………………12
2-1.1 軸對稱理論………………………………………………12
2-1.2 熱傳導理論………………………………………………14
2-2 降伏準則……………………………………………………15
2-3 疲勞壽命……………………………………………………16
2-4 MARC軟體簡介………………………………………………19
第三章 有限元素模型………………………………………………25
3-1 問題描述………………………………………………………25
3-2 分析方法………………………………………………………26
3-2.1 模型尺寸及材料性質……………………………………26
3-2.2 元素型式……………………………………………………27
3-2.3 邊界條件……………………………………………………28
3-3 循環次數比較…………………………………………………28
第四章 結果與討論…………………………………………………35
4-1 基本解析………………………………………………………35
4-1.1 光纖的應力行為……………………………………………36
4-1.2 環氧樹脂層的應變行為………………………………………37
4-2 長度的影響……………………………………………………38
4-2.1 應力和應變…………………………………………………39
4-2.2 壽命…………………………………………………………40
4-3 厚度的影響……………………………………………………43
4-3.1 應力和應變…………………………………………………44
4-3.2 壽命…………………………………………………………45
4-4 總結……………………………………………………………46
第五章 結論與未來展望……………………………………………78
5-1 結論……………………………………………………………78
5-2 未來展望………………………………………………………79
參考文獻………………………………………………………………80

圖目錄
圖1-1 連接器對接簡圖…………………………………………………11
圖1-2 多模光纖及單模光纖…………………………………………………11
圖2-1 軸對稱示意圖…………………………………………………22
圖2-2 von Mises降伏應力三維軌跡………………………………………22
圖2-3 彈性、塑性及總應變幅與疲勞壽命之關係…………………………23
圖2-4 MARC系統分析流程圖……………………………………………24
圖3-1 熱循環負載時間與溫度變化關係圖………………………………30
圖3-2 光纖連接器終端結構之組成………………………………………30
圖3-3 連接器端子之有限元素模型網格切割示意圖……………………31
圖3-4 光纖經不同循環次數的von Mises應力值比較……………………31
圖3-5 環氧樹脂層經不同循環次數的等效應變值比較……………………32
圖4-1 模組受熱循環負載後之von Mises 應力分布圖……………………48
圖4-2 模組受熱循環負載後各種材料之von Mises應力比較圖…………48
圖4-3 模組受熱循環負載後之等效應變分布圖……………………………49
圖4-4 模組受熱循環負載後各種材料之等效應變比較圖………………49
圖4-5 連接器端子在-65℃時模組之變形狀態……………………………50
圖4-6 光纖及套管在-65℃時之主應力分佈情形…………………………50
圖4-7 連接器端子在125℃時模組之變形狀態……………………………51
圖4-8 光纖及套管在125℃時之主應力分佈情形…………………………51
圖4-9 環氧樹脂層在高-低溫度變化時之剪應力分布……………………52
圖4-10 環氧樹脂層在高-低溫度變化時之剪應變分布…………………52
圖4-11 光纖在不同長度的套管中之von Mises應力比較圖………………53
圖4-12 光纖在不同長度的套管中之等效應變比較圖…………………53
圖4-13 環氧樹脂層在不同長度的套管中之von Mises應力比較圖………54
圖4-14 環氧樹脂層在不同長度的套管中之等效應變比較圖……………54
圖4-15 光纖和環氧樹脂層的應力及應變隨套管長度變化遞減率………55
圖4-16 光纖在不同環氧樹脂層厚度的套管中之von Mises應力比較圖…55
圖4-17 光纖在不同環氧樹脂層厚度的套管中之等效應變比較圖………56
圖4-18 環氧樹脂層在不同厚度的套管中之von Mises應力比較圖………56
圖4-19 環氧樹脂層在不同厚度的套管中之等效應變比較圖……………57
圖4-20 光纖和環氧樹脂層於0.5L時的應力及應變隨厚度變化率………57
圖4-21 光纖和環氧樹脂層的最大應力及應變隨厚度變化之遞減率……58
圖4-22 在相同環氧樹脂層厚度但不同套管長度時依Morrow公式計算不同模組壽命之變化率…………………………………………………59
圖4-23 在相同環氧樹脂層厚度但不同套管長度時依Modified Coffin-Manson公式計算不同模組壽命之變化率…………………60
圖4-24 在相同環氧樹脂層厚度下以Morrow公式和Modified Coffin-Manson公式計算不同模組壽命變化率之比較…………………………61
圖4-25 在相同套管長度但不同環氧樹脂層厚度時A點之von Mises應力值遞減率變化情形…………………………………………………62
圖4-26 在相同套管長度但不同環氧樹脂層厚度時A點之等效應變遞減率變化情形…………………………………………………63
圖4-27 在相同套管長度但不同環氧樹脂層厚度時C點之von Mises應力遞減率變化情形………………………………………………………64
圖4-28 在相同套管長度但不同環氧樹脂層厚度時C點之等效應變遞減率變化情形……………………………………………………………65
圖4-29 轉折點示意圖………………………………………………………66

表目錄
表3-1 日本陶瓷廠ADAMANT套管長度尺寸…………………………33
表3-2 模型所使用之元素及節點數目……………………………………33
表3-3 材料性質表…………………………………………………………34
表4-1 不同材料之應力及應變值…………………………………………67
表4-2 光纖和套管於高-低溫度變化時之主應力值………………………68
表4-3 環氧樹脂層在高-低溫度變化時之剪應力及剪應變值……………68
表4-4 光纖和環氧樹脂層在不同長度套管下之最大應力及應變值………69
表4-5 Morrow公式於不同誤差下各參數之靈敏度………………………70
表4-6 Modified Coffin-Manson公式於不同誤差下各參數之靈敏度……70
表4-7 模組在不同長度下以Morrow公式計算之循環次數………………71
表4-8 模組在不同長度下以Modified Coffin-Manson公式計算之循環次數………………………………………………………………………71
表4-9 光纖和環氧樹脂層在不同厚度環氧樹脂層之最大應力及應變值…72
表4-10 光纖和環氧樹脂層在不同厚度環氧樹脂層之應力及應變值(0.5L)………………………………………………………………72
表4-11 依Morrow公式計算不同模組的壽命……………………………73
表4-12 依Modified Coffin-Manson公式計算不同模組的壽命…………74
表4-13 A點之von Mises應力值…………………………………………75
表4-14 A點之等效應變值…………………………………………………75
表4-15 C點之von Mises應力值…………………………………………76
表4-16 C點之等效應變值…………………………………………………76
表4-17 轉折點對應之長度………………………………………………77
參考文獻 References
參考文獻
[1] Keiser, G., 1983, Optical fiber communications, McGraw-Hill, New York.
[2] Roger, L., 2002, Fiber-Optic Systems for Telecommunications, John Wiley & Sons, New York.
[3] Etsuji Sugita, Ryo Nagase, Kazunori Kanayama, Toshihiro Shintaku, 1989, “SC-Type Single-Mode Optical Fiber Connectors,” Journal of Lightwave Technology, Vol. 7, PP. 1689 –1696.
[4] Preston D., 1999, “Small Form Factor Connectors, ” Corning Incorporate Telecommunications Products Division
[5] Agarwal, A.K., Hutcheson, L.D., 1994, “Connectors in the outside plant environment: is performance and reliability a concern,” Electronic Components and Technology Conference, 44 th, PP. 986 –993.
[6] Agarwal, A.K., Hutcheson, L.D., 1995, “Performance and reliability of optical fiber connectors in the outside plant environment, ” Components, Packaging, and Manufacturing Technology, Vol. 18, PP. 221 –226.
[7] Baker, L.K., Bhatia, V., Glaesemann, G.S., Marro, M.A., Mansfield, C., 1999, “Fiber Bragg Grating for Stress Field Characterization inside A Connector,” Part of the SPIE Conference on Optical Fiber Reliability and Testing, Vol. 3848, PP. 207-211.
[8] Broadwater, K., and Mead, P. F., 2001, “Optical Fiber Strain in Epoxy-Cured Fiber Optic Connectors, ” Electronic Components and Technology Conference, 51st, PP. 1434 –1440.
[9] Suhir, E., 1990, “Analysis of Interfacial Thermal Stress and Adhesive Strength of Bi-Annular Cylinder,” International Journal of Solides Structures, Vol. 26, PP. 581 –600.
[10] Suhir, E., 1994, “Thermally Induced Stresses in an Optical Glass Fiber Soldered into a Ferrule,” Journal of Lightwave Technology, Vol. 12, PP. 1766 –1770.
[11] Suhir, E., 1994, “Pull Testing of a Glass Fiber Soldered into a Ferrule: How Long Should The Test Specimen Be?,” Applied Optics, Vol. 33, PP. 4109 –4112.
[12] Chang, H.L., Wang, S.C., Wang, C., Wang, C.M., Liaw, J.W., Sheen, M.T., Sheu, Y.C., Kuang, J.H., Chen, C.H., Chien, C.P., and Cheng, W.H., 1998,“Thermally Induced Shifts in an Optical Fiber Soldered into a Ferrule,” Lasers and Electro-Optics Society Annual Meeting, LEOS '98. IEEE , Vol. 2, PP. 388 –389.
[13] Cheng, W.H., Sheen, M.T., Chien, C.P., Chang, H.L., and Kuang, J.H., 2000,“Reduction of Fiber Alignment Shifts in Semiconductor Laser Module Packaging,”Journal of Lightwave Technology, Vol. 18, PP. 842 –848.
[14] Cheng, W.H., Sheen, M.T., Kuang, J.H., Chen, J.C., Wang, G.L., Wang, S.C., Chang, H.L., Wang, C., and Wang, C.M., 2000, “The Effect of Temperature Cycling on Fiber-Solder-Ferrule Joints in Laser Module Packaging,”Electronic Components & Technology Conference, 50th, PP. 1498-1503.
[15] Cheng, W.H., Sheen, M.T., Wang, G.L., Wang, S.C., and Kuang, J.H., 2001,“Fiber Alignment Shift Formation Mechanisms of Fiber-Solder-Ferrule Joints in Laser Module Packaging,”Journal of Lightwave Technology, Vol. 19, PP. 1177 –1184.
[16] Rassaian, M., Beranek, M.W., Voitek, M., 1995,“Hermeticity lifetime of a 63Sn37Pb solder sealed optical fiber feedthrough,” Electronic Components and Technology Conference, 45th, PP. 1110 –1115.
[17] Beranek, M.W., Rassaian, M., Tang, C.-H., St John, C.L., Loebs, V.A.,2001, “Characterization of 63Sn37Pb and 80Au2OSn solder sealed optical fiber feedthroughs subjected to repetitive thermal cycling,” Advanced Packaging, Vol. 24, PP. 576 –585
[18] Shintaku, T., Sugita, E., Nagase, R., 1993,“Highly stable physical-contact optical fiber connectors with spherical convex ends,”Journal of Lightwave Technology, Vol. 11, PP, 241 –248.
[19] Takahashi, M., 1992,“Optical connector ferrule,”U. S. Pat. 5140660.
[20] Takahashi, M., 1998,“Generating mechanism of maintaining force for optical fiber installed in ferrule hole,”Journal of Lightwave Technology, Vol. 16, PP. 549 –553.
[21] Chen, W.F., Han, D.J., 1995, Plasticity for Structural Engineers, Gau Lih, Taipei.
[22] Collins, J.A., 1993, Failure of Materials in Mechanical Design, John Wiley & Sons, New York.
[23] Castilone, R.J., 1999, “Mechanical Reliability: Applied Stress Design Guidelines,” Corning Incorporate White Paper
[24] 陳進明, 2002, 光塞取多工器構裝之殘留應力與銲後位移分析, 國立中山大學機械與機電工程研究所, 碩士論文
[25] Rao, S.S., 1999, The Finite Element Method in Engineering, Butterworth Heinemann, Madras.
[26] Knight, C.E., 1993, The Finite Element Method in Mechanical Design, PWS-KENT, Boston.
[27] Engelmaier, W., 1983, “Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. CHMT-6, PP, 232 –237.
[28] MARC Analysis Research Corporation, 1992, MARC User’s Guide, Mentat II, MARC Analysis Research Corporation.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code