Responsive image
博碩士論文 etd-0728104-173523 詳細資訊
Title page for etd-0728104-173523
論文名稱
Title
極化客/主非線性光學聚合物薄膜的電光係數研究
Study of Electro-Optic Coefficient of Poled Guest/Host Nonlinear Optical Polymer Thin Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-12
繳交日期
Date of Submission
2004-07-28
關鍵字
Keywords
電光效應、馬赫-詹德干涉儀、客/主型高分子
electro-optic effect, guest/host polymer, Mach-Zehnder interferometer
統計
Statistics
本論文已被瀏覽 5731 次,被下載 20
The thesis/dissertation has been browsed 5731 times, has been downloaded 20 times.
中文摘要
本文探討客/主型高分子的電光特性,將含有氟原子的電荷轉移分子Wu182與主體高分子PMMA溶於氯仿,並以混入PMMA的DR1作為比較樣品。將樣品Wu182/PMMA與DR1/PMMA以旋轉塗佈法製成薄膜,在高於薄膜樣品的玻璃轉變溫度的情況下進行極化,同時確認二倍頻訊號的產生。極化後的薄膜樣品置於馬赫-詹德干涉儀其中一臂,藉由附加於高分子薄膜的調變電壓造成的干涉儀相位變化來量測電光係數。從實驗中觀察調變頻率對電光效應造成的影響,實驗結果顯示Wu182具有高的非線性光學效應,而在頻率6 kHz以上可量得真實的電光係數r13,其大小為2.620 pm/V。
Abstract
In this study, we focus on the electric optical characteristic of guest/host polymer system. The charge transfer chromophore Wu182 which contain fluorine atom in it was mixed with polymer PMMA and solved in chloroform, while DR1/PMMA served as reference sample. The wu182/PMMA and DR1/PMMA thin films were produced by spin coating. The thin film was poled at the temperature above glass transition temperature until the second harmonic generation signal was present. The poled thin film was placed in one arm of Mach-Zehnder interferometer. Voltage modulation applied to the polymer films can cause phase changes in the interferometer from that we estimate the electro-optic coefficient. From our experiments, we found that modulating frequency had significant influence on the electro-optic effect. The result shows that Wu182 possess large nonlinear optical coefficient. The valid electro-optic coefficient r13 was obtained to be 2.620 pm/V when the frequency was above 6 kHz.
目次 Table of Contents
摘要..............................................................................................i
目錄.............................................................................................ii
表目錄........................................................................................iv
圖目錄.........................................................................................v
第一章 序論…………………………………………………...1
1.1 進展………………………………………………..........1
1.2 非線性光學高分子種類………………………………..2
1.3 待測樣品………………………………………………..5
第二章 原理…………………………………………………...6
2.1 非線性光學與二倍頻效應……………………………..6
2.2 折射率橢球……………………………………………..7
2.3 電光效應………………………………………………10
2.4 極化……………………………………………………11
2.5 極化薄膜的電光係數…………………………………12
2.6 非中心對稱……………………………………………13
2.7 電光係數的量測技術…………………………………14
2.8 馬赫-詹德干涉儀的量測原理………………………...15
2.9 縱向調變與橫向調變…………………………………17
2.10 比爾定律………………………………………….….18
第三章 實驗…………………………………………….……19
3.1 基板清潔…………........................................................19
3.2 樣品配製........................................................................19
3.3 樣品極化........................................................................20
3.4 觀察二倍頻訊號............................................................21
3.5 電光係數的量測............................................................22
第四章 結果與討論.................................................................25
4.1 Wu182/PMMA薄膜與DR1/PMMA薄膜
的結果比較.....................................................................25
4.2電光係數與頻率的關係.................................................27
第五章 結論.............................................................................29
參考文獻...................................................................................30
附表...........................................................................................37
附圖...........................................................................................38
參考文獻 References
1. E. Van Tomme, P. P. Van Daele, R. G. Baets, and P. E. Lagasse, “Integrated optic devices based on nonlinear optical polymers”, IEEE J. Quantum Electron. QE-27, 778 (1991).
2. D. G. Girton, S. L. Kwiatkowski, G. F. Lipscomb, and R. S. Lytel, “20 GHz electro-optic polymer Mach–Zehnder modulator”, Appl. Phys. Lett. 58, 1730 (1991).
3. C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth”, Appl. Phys. Lett. 60, 1538 (1992).
4. S. Ermer, J. F. Valley, R. Lytel, G. F. Lipscomb, T. E. Van Eck, and D. G. Girton, “DCM-polyimide system for triple-stack poled polymer electro-optic devices”, Appl. Phys. Lett. 61, 2272 (1992).
5. W. Wang, D. Chen, H, Fetterman, Y. Shi, W. H. Steier, and L. R. Dalton, “Traveling wave electro-optic phase modulator using cross-linked nonlinear optical polymer”, Appl. Phys. Lett. 65, 929 (1994).
6. S. R. Marder, B. Kippelen, A. K.-Y. Jen, and N. Peyghambarian, “Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications”, Nature 388, 845 (1997).
7. A. Chen, V. Chuyanov, S. Garner, H. Zhang, W. H. Steier, J. Chen, J. Zhu, F. Wang, M. He, H. Mao, and L. R. Dalton, “Low-Vp electro-optic modulator with a high-mb chromophore and a constant-bias field”, Opt. Lett. 23, 478 (1998).
8. L. A. Hornak, Polymers for Lightwave and Integrated Optics: Technology and Applications, Marcel Dekker, (1992).
9. B. K. Nayar and C. S. Winter, “Organic second-order non-linear optical materials and devices”, Opt. Quantum Electron. 22, 297 (1990).
10. E. Van Tomme, P. P. Van Daele, R. G. Baets, G. R. Mohlmann, and M. B. J. Diemeer, “Guided wave modulators and switches fabricated in electro-optic polymers”, J. Appl. Phys. 69, 6273 (1991).
11. L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing”, Adv. Mater. 6, 519 (1995).
12. L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren,S. Garner, A. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, and A. Jend, “From molecules to opto-chips: organic electro-optic materials”, J. Mater. Chem. 9, 1905 (1999).
13. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure”, Appl. Phys. A 37, 191 (1985).
14. I. Faderl, P. Labeye, P. Gidon, and P. Mottier, “Integration of an electrooptic polymer in an integrated optics circuit on silicon”, J. Lightwave Technol. 13, 2020 (1995).
15. B. Ameduri and B. Boutevin, “Copolymerization of fluorinated monomers: recent developments and future trends”, J. Fluorine Chem. 104, 53 (2000).
16. D. Lei, J. Runt, and R. E. Newnham, “Dielectric properties of azo dye-poly(methyl methacrylate) mixtures”, Macromolecules 20, 1797 (1987).
17. H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Orientation and second-harmonic generation in doped polystyrene and poly(methyl methacrylate) films”, Macromolecules 21, 526 (1988).
18. H. L. Hampsch, J. Yang, G. K. Wong, and J. M. Torkelson, “Dopant orientation dynamics in doped second-order nonlinear optical amorphous polymers. 1. Effects of temperature above and below Tg in corona-poled films”, Macromolecules 23, 3640 (1990).
19. T. Goodson III, S. S. Gong, and C. H. Wang, “Nonlinear optical susceptibility of a model guest-host polymeric system as investigated by electrooptics and second-harmonic generation”, Macromolecules 27, 4278 (1994).
20. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-Order Nonlinearity in Poled-Polymer Systems”, Chem. Rev. 94, 31 (1994).
21. N. Tirelli, U. W. Suter, A. Altomare, R. Solaro, F. Ciardelli, S. Follonier,Ch. Bosshard, and P. Gunter, “Structure-activity relationship of new nonlinear optical organic materials based on push-pull azo dyes. 3. guest-host systems”, Macromocules 31, 2152 (1998).
22. M. Chen, L. Yu, L. R. Dalton, Y. Shi, and W. H. Steier, “New polymers with large and stable second-order nonlinear optical effects”, Macromolecules 24, 5421 (1991).
23. M. W. Becker, L. S. Sapochak, R. Ghosen, C. Xu, L. R. Dalton, Y. Shi, W. H. Steier, and A. K.-Y. Jen, “Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore”, Chem. Mater. 6, 104 (1994).
24. J. Luo, M. Haller, H. Li, H.-Z. Tang, A. K.-Y. Jen, K. Jakka, C.-H. Chou, and C.-F. Shu, “A side-chain dendronized nonlinear optical polyimide with large and thermally stable electrooptic activity”, Macromolecules 37, 248 (2004).
25. M. Eich, A. Sen, H. Looser, G. C. Bjorklund, J. D. Swalen, R. Twieg, and D. Y. Yoon, “Corona poling and real-time second-harmonic generation study of a novel covalently functionalized amorphous nonlinear optical polymer”, J. Appl. Phys. 66, 2559 (1989).
26. C. Xu, B. Wu, L. R. Dalton, P. M. Ranon, Y. Shi, and W. H. Steier, “New random main-chain, second-order nonlinear optical polymers”, Macromolecules 25, 6716 (1992).
27. T. C. Kowalczyk, T. Z. Kosc, K. D. Singer, A. J. Beuhler, D. A. Wargowski, P. A. Cahill, C. H. Seager, M. B. Meinhardt, and S. Ermer, “Crosslinked polyimide electro-optic materials”, J. Appl. Phys. 78, 5876 (1995).
28. C. Xu, B. Wu, O. Todorova, L. R. Dalton, Y. Shi, P. M. Ranon, and W. H. Steier, Macromolecules 26, “Stabilization of the dipole alignment of poled nonlinear optical polymers by ultrastructure synthesis”, 5303 (1993).
29. H.-Q. Xie, Z.-H. Liu, L. Hao, and J.-S. Guo, “Nonlinear optical crosslinked polymers and interpenetrating polymer networks containing azo-benzothiazole chromophore groups”, Polymer 39, 2393 (1998).
30. C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, “Highly cross-linked polyurethane with enhanced stability of second-order nonlinear optical properties”, Macromolecules 28, 3713 (1995).
31. C. E. Masse, J. L. Conroy, M. Cazeca, X. L. Jiang, D. J. Sandman, J. Kumar, and S. K. Tripathy, “Second-order nonlinear optical properties of a photocrosslinkable epoxy-based polymer”, J. Appl. Polym. Sci. 60, 513 (1996).
32. Y. Liu, Y. Wang, and R. O. Claus, “ Layer-by-layer ionic self-assembly of Au colloids into multilayer thin-films with bulk metal conductivity”, Chem. Phys. Lett. 298, 315 (1998).
33. Y. Liu and R. O. Claus, “Strong enhancement of optical absorbance from ionic self-assembled multilayer thin films of nanocluster Pt and polymer dye”, J. Appl. Phys. 85, 419 (1999).
34. L. Zhang, F. Zhang, K. Cooper, Y. Wang, Y. Liu, and R. Claus, “Electro-optic property measurements of electrostatically self-assembled ultrathin films”, Opt. Commun. 186, 135 (2000).
35. F. Qiu, K. Misawa, X. Cheng, A. Ueki, and T. Kobayashi, “Determination of complex tensor components of electro-optic constants of dye-doped polymer films with a Mach–Zehnder interferometer”,Appl. Phys. Lett. 65, 1605 (1994).
36. H. Ono, K. Misawa, K. Minoshima, A. Ueki, “Complex electro-optic constants of dye-doped polymer films determined with a Mach–Zehnder interferometer”, J. Appl. Phys. 77, 4935 (1995).
37. D. Apitz, C. Svanberg, K. G. Jespersen, T. G. Pedersen, and P. M. Johansen, “Orientational dynamics in dye-doped organic electro-optic materials”, J. Appl. Phys. 94, 6263 (2003).
38. J. Luo, H. Ma, M. Haller, A. K.-Y. Jen, and R. R. Barto, “Large electro-optic activity and low optical loss derived from a highly fluorinated dendritic nonlinear optical chromophore”, Chem. Commun., 888 (2002).
39. R. W. Boyd, Nonlinear Optics, Academic Press (1992).
40. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, and A. Dienes, “Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures”, J. Opt. Soc. Am. B 6, 733 (1989).
41. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers”, Appl. Phys. Lett. 56, 1734 (1990).
42. J. S. Schildkraut, “Determination of the electrooptic coefficient of a poled polymer film”, Appl. Opt. 29, 2839 (1990).
43. D. Morichere, P.-A Chollet, W. Fleming, M. Jurich, B. A. Smith, and J. D. Swalen, “Electro-optic effects in two tolane side-chain nonlinear-optical polymers: comparison between measured coefficients and second-harmonic generation”, J. Opt. Soc. Am. B 10, 1894 (1993).
44. R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, “Electro-optic tensor ratio determination of side-chain copolymers with electro-optic interferometry”, J. Appl. Phys. 75, 1869 (1994).
45. Y. Shuto and M. Amano, “Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films”, J. Appl. Phys. 77, 4632 (1995).
46. P. N. Prasad and D. R. Ulrich, Nonlinear Optical and Electroactive Polymers, Plenum Press (1988).
47. S. Herminghaus, B. A. Smith, and J. D. Swalen, “Electro-optic coefficients in electric-field-poled polymer waveguides”, J. Opt. Soc. Am. B 8, 2311 (1991).
48. M. Sigelle and R. Hierle, “ Determination of the electrooptic coefficients of 3-methyl 4-nitropyridine 1-oxide by an interferometric phase-modulation technique”, J. Appl. Phys. 52, 4199 (1981).
49. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films”, Appl. Phys. Lett. 53, 1800 (1988).
50. B. Swedek, N Cheng, Y. Cui, J. Zieba, J. Winiarz, and P. N. Prasad, “Temperature-dependence studies of photorefractive effect in a low glass-transition-temperature polymer composite”, J. Appl. Phys. 82, 5923 (1997).
51. D. J. Williams, “Organic polymeric and non-polymeric materials with large optical nonlinearities”, Angew. Chem. Int. Ed. Engl. 23, 690 (1984).
52. 林育泉, 國立中山大學物理系碩士論文 (2003).
53. G. Knabke, H. Franke, and W. F. X. Frank, “Electro-optical properties of a nonlinear dye in poly(methyl methacrylate) and poly(Alpha-methylstyrene)”, J. Opt. Soc. Am. B 6, 761 (1989).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.188.40.207
論文開放下載的時間是 校外不公開

Your IP address is 18.188.40.207
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code