Responsive image
博碩士論文 etd-0728104-222601 詳細資訊
Title page for etd-0728104-222601
論文名稱
Title
滑動潤滑表面電蝕形成機制之研究
Studies on Electrical Pitting Formation Mechanism of the Sliding Lubricated Surfaces
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-10
繳交日期
Date of Submission
2004-07-28
關鍵字
Keywords
滑動潤滑、電蝕、二硫化鉬、直流電場
Electric pitting, MoS2, Slidy lubrication, DC electric field
統計
Statistics
本論文已被瀏覽 5632 次,被下載 12
The thesis/dissertation has been browsed 5632 times, has been downloaded 12 times.
中文摘要
本研究使用自行研製之高精度電蝕試驗機及掃瞄電子顯微鏡探討在靜態與動態條件下,添加含有不同濃度導電性二硫化鉬(MoS2)添加劑之潤滑油,在不同直流供應電壓、供應電流、和油膜厚度等實驗參數下,軸承鋼球對中碳鋼平板之潤滑表面的電氣行為和作用力及損傷形成機制。
實驗結果發現,在靜態電蝕情況下,由門檻電壓和油膜厚度及顆粒濃度所組成之含電蝕和非電蝕等兩個區域的電蝕型態圖,電蝕區域隨著MoS2濃度及供應電流之增加而擴大。又,電蝕面積與界面功率的比值(Ad/P)隨著油膜厚度和MoS2濃度的增加而急速增加。這是由於MoS2具有促進熔融金屬凸起成長而推開兩試片之作用。界面功率主要消耗於凸起和界面材料的加熱。此外,MoS2濃度並不影響凸起材料的拉伸強度。
從動態表面損傷觀察結果得知,添加導電性MoS2粉末使平板電蝕表面寬度更為明顯。且電蝕的寬度隨油膜厚度和MoS2濃度的增加而增加。從垂直力和摩擦力、界面阻抗及表面觀察等實驗結果推論出靜態和動態的潤滑表面電蝕形成過程模式圖。
Abstract
In this study, a electrical pitting tester and SEM are employed to investigate the effects of supply voltage, supply current, and oil film thickness on the electrical behavior, the action forces, and the formation mechanism of electric pitting for the lubricated surface of steel pair at sliding speed of 1μm/sec using an additive of MoS2 in paraffin base oil under DC electric field.
According to the experimental results and the observations of the surface pitting, two electrical pitting regimes are found under the influences of shaft voltage, oil film thickness, and particle concentration of additive, namely, pitting and no- pitting regimes in static condition. The area of pitting regime increases with increasing additive concentration and supply current. Furthermore, The ratio of pitting area to the interface power increases rapidly with increasing additive concentration and oil film thickness. This results from the molten plateau that directly connects two specimens, and the interface power is mainly consumed at the heating of the plateau and the interfacial materials. However, the weld strength of the plateau isn’t influenced with additive concentration.
It is known from the observations of the surface pitting in dynamic pitting occurs that the pitting width increases with increasing oil film thickness and additive concentration. Finally, the formation processes of electric pitting on the lubricated surface for both static and sliding conditions are deduced from the results of the normal force, the friction force, the interface impedance and the observations of the surface pitting.
目次 Table of Contents
總 目 錄
總目錄 Ⅰ
圖目錄 Ⅳ
表目錄 Ⅸ
中文摘要 Ⅹ
英文摘要 ⅩⅠ
符號說明 ⅩⅢ
第一章 緒論 1
1-1 研究動機 1
1-2 軸電壓與軸電流之來源 2
1-3 放電現象之發生與種類 6
1-4 文獻回顧 8
1-4-1 軸電壓、軸電流形成之原因 8
1-4-2 軸電流對軸承電蝕蝕之影響 9
1-4-3 電蝕機制之探討 11
1-4-4 二硫化鉬電蝕潤滑特性之探討 12
1-4-5 電流變流體機制與放電加工機制之探討 13
第二章 實驗設備與方法 16
2-1 高精度動態電蝕試驗機 16
2-1-1 動態電蝕試驗機系統 19
2-1-2 量測與資料收集分析系統 20
2-1-3 實驗時間之設定 22
2-1-3 滑動及油膜厚度控制系統 23
2-2 實驗材料、潤滑油及添加劑二硫化鉬性質 25
2-2-1 鋼材配對之尺寸及材料特性 25
2-2-2 試片處理方法 27
2-2-3 潤滑油 29
2-2-4 二硫化鉬之處理 29
2-2-4 二硫化鉬之特性 29
2-3 實驗條件 31
2-4 實驗步驟 32
2-4-1 試片平行度校正 32
2-4-2 試片間接觸區與非接觸判斷 33
2-4-3 油膜厚度之調整 33
2-4-5 實驗之等效電路圖 36
2-4-6 電蝕試驗之實驗步驟 38
第三章 實驗結果與討論 41
3-1 靜態電蝕 41
3-1-1 界面電壓與界面阻抗 41
3-1-2 電蝕形成的門檻條件 44
3-1-3 電蝕表面之觀察 49
3-1-4 凸起的形成機制 53
3-1-5 界面功率之消耗 64
3-2 動態電蝕 67
3-2-1 界面電壓與界面阻抗 67
3-2-2 電蝕表面之觀察 72
3-2-3 動態電蝕的形成機制 76
3-2-4 滑動狀態下之正向力與摩擦力及摩擦係數 81
3-2-5 界面功率之消耗 89
第四章 結論 91
參考文獻 93
參考文獻 References
1. H.N. Kaufman and J. Boyd, “The conduction of current in bearings”, ASLE Transactions, 2 (1959) 67-77.
2. M.J. Costell, “Shaft Voltage and Rotating Machinery,” IEEE Trans. on Industry Applications 29,2, (1993) 419 -426.
3. C. Ammann, K. Rechert, R. Joho, Z. Posedel, ”Shaft voltage in generators with static excitation system--problems and solution”, IEEE Transactions on Energy Coversion, 3,2 (1988) 409-420
4. H. Prashad, “The effect of current leakage on electroadhesion forces in rolling friction and magnetic flux density distribution on the surface of rolling element bearings”, Trans. ASME J. Trib., 110 (1988) 448-455.
5. J. Boyd and H. N. Kaufman, “The causes and the control of electrical currents in bearings”, Lubrication Engineering, January (1959) 28-35.
6. J. M. Erdman, R.J. Kerkman, D. W. Schlegel. and G. L. Skibinski, “Effect of PWM inverters on AC motor bearing currents and shaft voltage, IEEE Transactions on Industry Applications, 32,2 (l996) 250-259.
7. A. Kohno, H. Ooyabu, and N. Soda., “Effect of electric current on wear of materials for current collection”, J. Jpn. Soc. Lubr. Eng., 26 (8) (1981) 562-567 (in Japanese)
8. H. Prashad, “Throretical analysis of the effects of instantaneous charge leakage on roller tracks of roller bearings lubricated with high resistivity lubricants under the influence of electric current”, Trans. ASME J. Trib., 112 (1990) 37-43.
9. H. Prashad, “Theoretical evaluation of capacitance, capacitive reactance, resistance and their effects on performance of hydrodynamic journal bearings”, Trans. ASME J. Trib., 113 (1991) 762-767.
10. H. Prashad, “Theoretical evaluation of reduction in the life of hydrodynamic journal bearings operating under the influense of different levels of shaft voltages”, STLE Trib. Trans, 34 (1991) 623-627.
11. H. Prashad, “Investigation of damaged rolling-element bearings and deterioration of lubricants under the influence of electric fields”, Wear, 176 (1994) 151-161.
12. H.N. Kaufman and J. Boyd, “The conduction of current in bearings”, ASLE Transactions, 2 (1959) 67-77.
13. H. Prashad, “Diagnosis of failure of rolling-element bearings of alternators--a study”, Wear, 198 (1996) 46-51.
14. S. Komatsuzaki, T. Uematsu and R. Itoh, “A study of antielectrowear properties of lubricating greases from the viewpoint of grease composition”, J. JSLE, 28, (1) (1983) 54-60, J. JSLE, International Ed., 5 (1984) 169-174.
15. S. Komatsuzaki, T. Uematsu and F. Nakano, “Bearing damage by electrical wear and its effect on deterioration of lubricating greases”, ASLE, Lubr. Eng., 43 (1987) 25-30.

16. H. Prashad, K.N. Rao, “Analysis of capacitive effect and life estimation of hydrodynamic journal bearings on repeated starts and stops of a machine operating under the influence of shaft voltages”, STLE Trib. Trans. 37 (1994) 641-645.
17. H. Prashad, “Effect of operating parameters on the threshold voltages and impedance response of non-insulated rolling element bearings under the action of electrical currents”, Wear, 117 (1987) 223-240.
18. H. Prashad, “Theoretical evaluation of impedance, capacitance and charge accumulation on roller bearings operated under electrical fields”, Wear, 125 (1988) 223-239.
19. 森正美、河野彰夫、三科博司、金釜雲嚴、大竹政雄, “境界狀態下之通電發熱現象”,日本Ььユп①Щ 學會Ььユп①Щ 會議予稿集(北九州1996-10)
20. H. Prashad, “Theoretical analysis of capacitive effect of roller bearings on repeated starts and stops of a machine operating under the influence of shaft voltages”, ASME Journal of Tribology, 114 (1992) 818-822
21. Y. C. Chiou , R. T. Lee, C. M. Lin, “Formation criterion and mechanism of electrical pitting on the lubricated surface under AC electric field” Wear 236, (1999) 62–72
22. Y. C. Chiou , R. T. Lee, C. M. Lin, “Pitting mechanismon lubricated surface of babbitt alloy/bearing steel pair under ac electric field” Wear 249, (2001) 133–142
23. 林欣民, “運動參數對潤滑表面電蝕形成機制之影響”, 國立中山大學機械研究所碩士論文(2003)
24. A.J. Stock, “Evaluation of solid lubricant dispersion on a four ball tester”, Lubr. Eng., 22, (1966) 146-152.
25. W.J. Bartz, “Solid lubricant additives-effects of concentration and other additives on anti-wear performance”, Wear, 17, (1971) 421-432.
26. W.J. Bartz and J. Oppelt, “Lubricating effectiveness of oil-soluble additives and molybdenum disulfide dispersed in mineral oil”, Lubr. Eng., 36, (1980) 579-585.
27. W.J. Bartz,” Some Investigations on the Influence of particle size on the lubricating effectiveness of molybdenum disulfide”, ASLE Trans., 5, (1972) 207-215.
28. J. Gansheimer and R. Holinky, “A study of solid lubricants in oil and greases under boundary condition”, Wear, 20, (1972) 439-449.
29. 林忠民, “潤滑金屬表面電蝕機制之基礎研究”, 國立中山大學機械博士班博士論文(2003)
30. D.J. Kingenberg, Frank van Swol, and C.F. Zukoski,” Dynamic simulation of electrorheological suspensions”, J. Chem. Phys. 91(12) 15, (1989) 7888-7895
31. S. Morishita, ”Active control of tribology using electro-rheological fluid”, Japan J. of Tribology, 38, 8 (1993) 1011-1017
32. C.W. Wu, H. Conrad, ” Electrical properties of electrorheo -logical particle clusters”, Material science and engineering A255 (1998) 66-69
33. H. Conrad, ”Properties and design of electrorheological suspensions”, MRS Bulletin , 23,8 (1998) 35-42
34. Y.M. Quan, Y. H. Liu, ”Powder-suspension dielectric fluid for EDM”, Journal of Materials Processing Technology, 52 (1995) 44-54
35. Y.S. Wong, L.C. Lim, ”Near-mirror-finish phenomenon in EDM using powder-mixed dielectric”, Journal of Materials Processing Technology, 79 (1998) 30-40
36. J.M. Meek and and J.D. Craggs”, Electrical breakdown of gases”, Oxford: Oxford University Press, (1953)
37. W.J. Bartz and K. Muller, “Investigation of the lubricating effectiveness of molybdenum disulfide”, Wear, 20, (1972) 371-379.
38. O.EI Beqqali, I. Zorkani, Rogemond, H. Chermette, R. Ben Chaabane, M. Gamoudi, G. Guillaud, ”Electrical properties of molybdenum disulfide MoS2 Experimental study and density functional calculation results”, Synthetic Metals, 90 (1997) 165-172
39. D.G. Teer, J. Hampshire, V. Fox, V. Bellido-Gonzalez, ”The tribological of MoS2/metal composite coatings deposited by closed field magnetron sputtering”, Surface and Coatings Technology, 94-95 (1997) 572-577

40. V.C. Fox , N. Renevier, D.G. Teer , J. Hampshire , V. Rigato, ”The structure of tribologically improved MoS2-metal composite coatings and their industrial applications”, Surface and Coatings Technology, 116-119 (1999) 492-497
41. F.J. Clauss, ”Solid lubricants and self-lubricating solids”, New York: Academic Press, (1972)
42. T. B. Lane and J. R. Hughes,” A study of the oil Film Formation in Gears by Electrical Resistance Measurements”, Br. J. Appl. Phys., Vol. 3, pp.315-318(1952).
43. A.Shadowitz, Electromagnetic fields and energy, New York, (1975)486-489
44. E.Rabinowicz, Friction and wear of materials, wiley, New York, (1995)82-88
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.72.14
論文開放下載的時間是 校外不公開

Your IP address is 3.139.72.14
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code