Responsive image
博碩士論文 etd-0728105-095652 詳細資訊
Title page for etd-0728105-095652
論文名稱
Title
時域有限差分法與模型階數減縮法結合之分析與應用
Analysis and Application of the Model Order Reduction Method in the Finite-Difference Time-Domain Algorithm
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-19
繳交日期
Date of Submission
2005-07-28
關鍵字
Keywords
模型階數減縮、時域有限差分
Finite-Difference Time Domain, Model Order Reduction
統計
Statistics
本論文已被瀏覽 5701 次,被下載 17
The thesis/dissertation has been browsed 5701 times, has been downloaded 17 times.
中文摘要
眾所周知的,時域有限差分法用來解決電磁的問題是一個很好的分析工具。若在同一模擬空間內,有一結構的尺寸遠小於其他結構,為了描述此一結構,必需把空間網格切小,且由於穩定條件的關係,單位時間步階的設定亦需同時變小。由於空間網格與時間步階的縮小,相對的便需要使用較多記憶體及計算時間。因此便有一些數值方法的提出來克服這些問題,比如次網格法和非均勻網格法。

本論文提出一個有效率的方法來產生 FDTD次網格的方程式。我們建構一個二階的巨集模型來取代傳統FDTD的次網格區域,再利用模型階數減縮法(Model Order Reduction)將原始的矩陣減縮,並轉換成新的FDTD的方程式。此方法的另一個優點是,當同一物件重覆的出現在模擬空間中時,減縮模型只需計算一次,便可將得到的減縮模型使用於其他重覆出現的區域。
Abstract
It is well known that the finite difference time domain (FDTD) method is a powerful numerical analysis tool for solving electromagnetic problems. In a simulated area, in order to discretize an object which is much smaller than the others, a very small space increment is needed and hence the time step should be decreased too for stability consideration in traditional FDTD. The small space and time increments will respectively increase the memory requirement and calculation time. To overcome these problems, some numerical methods were developed, such as the subcell and nonuniform grid method, to handle the small feature size.

This thesis describes an efficient method for generating FDTD subcell equations. We construct a second order macromodel system instead of the subcell region in conventional FDTD. The macromodel system can be reduced with model order reduction techniques (MOR) and then translated into new FDTD update equations. When the problem contains several objects of the same size and material properties, the MOR subcell has the advantage of reusability. This means that the reduce-order model of the object needs to be generated only once nonetheless can be applied to every position where the objects originally occupied.
目次 Table of Contents
目錄……………………………………………………………..……………………IV
圖表目錄…………………………………………………………….………………..V
第一章 序論…………………………………………………………………………..1
1-1 概述………………………………………………………………………….1
1-2 論文大綱……………………………………………………………………3
第二章 模型階數減縮法 ………………………………………………………..…4
2-1模型階數減縮法原理 ………………………………………..…………….5
2-1-1相似轉換及其不變性…………………………………………..…….7
2-1-2 Krylov 子空間……… ………………………..………..……………. 7
2-2-Lanczos 和Arnoldi演算法 ……………………………...………………10
2-2-1 Lanczos演算法 …………..……………………………………….10
2-2-2 Arnoldi演算法 ………..……..……………………………………. 12
2-3 Laguerre-SVD 演算法………………………………………...…………...13
2-4 二階 Krylov 子空間………………………………………...….………...15
2-4-1效率化節點階數減縮法(ENOR)…………………………...….……….16
2-4-2應用二階Arnoldi 法的被動式階數減縮(SAPOR) …………….……17
第三章 模型階數減縮法結合FDTD……...…………………..……………………20
3-1模型階數減縮法建立次網格 …………………………………………….21
3-2 模型階數減縮法的應用……………………………………...……………27
第四章 模型階數減縮法的改進…………...……………………..…………………35
4-1 第一次修改 ………………………………………………………………35
4-2 第二次修改 ………………………………………………………………44
第五章 結論………………………………………………………………………...50
參考文獻……………………………………………………………………………..51
參考文獻 References
[1] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations,” IEEE Trans. Electromagnetic Compatibility, vol. EMC-23, pp. 377-382, Nov. 1981.
[2] A. Taflove, Computational Electrodynamics The finite-Difference Time-Domain Method, 1995.
[3] T. Namiki, “A new FDTD algorithm based on alternating direction implicit method,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2003-2007, Oct. 1999.
[4] A. P. Zhao, “Analysis of the Numerical Dispersion fo the 2-D Alternating direction Implicit FDTD Method,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 4, pp. 1156-1164, April 2002.
[5] F. Zheng and Z. Chen , “Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method,” IEEE Microwave Theory and Techniques, vol. 49, pp. 1006-109,May 2001.
[6] T.W. Lee and S. C. Hagness, “Wave source conditions for the unconditionally stable ADI-FDTD method ,” IEEE, Antennas and Propagation Society International Symposium, vol. 4, pp.142-145, July 2001.
[7] S. Wang, “On the current source implementation for the ADI-FDTD method,” IEEE, Microwave and Wireless Components Letters, vol. 14, no.11, pp. 513-515,Nov. 2004.
[8] S.G. Garcia, A.R. Bretones, R.G. Martin, and S.C. Hagness, “Accurate implementation of current sources in the ADI-FDTD scheme,” IEEE, Antennas and Wireless Propagation Letters, vol. 3, pp. 141-144 ,2004.
[9] G. Sun and C.W. Trueman, “Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell's equations,” IEEE, Electronics Letters, vol. 39, pp.595-597, April 2003.
[10] G. Sun and C.W. Trueman, “Unconditionally-stable FDTD method based on Crank-Nicolson scheme for solving three-dimensional Maxwell equations,” IEEE, Electronics Letters, vol.40,pp.589-590,May 2004.
[11] G. D. Kondylis,F. De Flaviis, G.J. Pottie ,and T. Itoh, “A memory-efficient formulation of the finite-difference time-domain method for the solution of Maxwell equations,” IEEE Microwave Theory and Techniques , vol. 49, July 2001.
[12] E. A.Navarro, N. T. Sangary, and J. Litva, “Some considerations on the accuracy of the nonuniform FDTD method and its application to waveguide analysis when combined with the perfectly matched layer technique,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1115-1124, July 1996.
[13] M.Oloniewski, E. Okpmoewsla, and M. A. Stuchly, “Three-dimensional subgridding algorithm for FDTD,” IEEE Trans. Antennas and Propagation, vol. 45, pp. 422-429, Mar 1993.
[14]林明村, “時域有限差分法之非均勻網格分析與應用”,國立中山大學電機工程研究所碩士論文,2000.
[15] B. Denecker ,F. Olyslager, L. Knockaer ,and D. De Zutter, “Generation of FDTD subcell equations by means of reduced order modeling,” IEEE, Antennas and Propagation, vol. 51, no. 8, pp.1806-1817, Aug. 2003.
[16] K. Gallivan,E. Grimme, and P. Van Doren. “Pade approximation of large-scale dynamic ststems with Lancos methods,” IEEE, Decision and Control, Proceedings of the 33rd IEEE Conference on, vol. 1 ,pp. 443-448,1994.
[17] A.C. Antoulas ,and D.C. Sorensen, “Approximation of large-scale dynamical systems: An overview,” Int. J. Appl. Math. Comput. Sci, vol. 11, no. 5, pp. 1093-1121, Feb. 2001.
[18] A.C. Antoulas and D.C. Sorensen, “Projection methods for balanced model reduction , Technical Report ECE-CAMM Depts. Rice University, March 2001.
[19] P. Feldmann and R. W. Freund, “Reduced-order modeling of large linear subcricuits via a block Lanczos algorithm,” IEEE/ACM Proc. DAC, pp.474-479, June 1995.
[20] R.W. Freund, “Krylov Subspace Method for Reduced Order Modeling in Circuit Simulation,” J. Comp. Appl. Math., pp.395-421, 2000.
[21] R.F. Remis, and P. M. van den Berg, “A modified Lanczos algorithm for the computation of transient electromagnetic wave fields,” IEEE Microwave Theory and Techniques, vol. 45, no. 12,pp.2139-2149, Dec. 1997.
[22] L. Kulas and M. Mrozowski, “Reduced-Order Models in FDTD,” IEEE Microwave and Wireless Components letter, vol. 11, No.10 ,Oct. 2001.
[23] B.C. Kuo, Automatic Control Systems, Prentice Hall, 7th edition,1995.
[24] B.Lohmann, and B. Salimbahrami, “Krylov Subspace Methods for the Reduction of First and Second Order Large-Scale Systems”. Proceedings of 8th DFMRS- Conference, pp. 236-251, February 2004,
[25] T. Kailath., Linear systems. Printice-Hall,1980.
[26] B. Salimbahrami, B. Lohmann, “Modified Lanczos Algorithm in Model Order Reduction of MIMO Linear Systems, “Scientific report, Institute of Automation , University of Bremen, 2002.
[27] B. Salimbahrami, B. Lohmann, and T. Bechtold, “Two-side Arnoldi in order reduction of large scale MIMO systems,” Scientific report, Institute of Automation , University of Bremen, 2002.
[28] C. Lanczos, “An iteration method for the solution of the eigenvalue problem of linear diffrentioal and intergal operators,” J .Res. Nat. Burean Stan., pp255-282, 1950.
[29] D.L. Boley, “Krylov space methods on state space control models,” Circuits Syst. Signal Process, pp733-758, 1994
[30] R.W. Freund, “Passive reduced-order modeling via Krylov subspace methods,” Numerical analysis Manuscript, March 2000.
[31] L. Knockaert and D. D. Zutter, “Laguerre-SVD Reduced-Order Modeling”, IEEE, Microwave theory and techniques, vol. 48, pp. 1469-1475, Set. 2000.
[32] B. Denecker, F. Olyslager, L. Knockaert, and D. D. Zutter “Generation of FDTD Subcell Equations by Means of Reduced Order Modeling,” IEEE, Antennas and Propagation , vol. 51, pp. 1806-1817, Aug. 2003.
[33] D Ramaswamy and J. White, “Automatic Generation of small-signal Dynamic Macromodels from 3D Simulation,” NIS, Numerical Algorithms, vol. 1, pp.27-30, 2001.
[34] B.N. Sheehan, “ENOR: Model Order Reduction of RLC Circuits Using Nodal Equations for Efficient Factorization.” Proc. of IEEE/ACM DAC ’99, pp. 17 21, 1999.
[35] H. Zheng and L. Pileggi, “Robust and Passive Model Order Reduction for Circuits Containing Susceptance Elements.” Proc. of IEEE/ACM ICCAD 2002, pp. 761-766, 2002.
[36] Y. Su, “SAPOR: Second-Order Arnoldi Method for Passive Order Reduction of RCS Circuits.” Computer Aided Design, IEEE/ACM ICCAD-2004, pp. 74 - 79, 2004.
[37] Z. Bai and Y. Su, “SOAR: A Second-Order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem,” Computer Science Technical Report, CSE-2003-21, University of California, Davis, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.40.177
論文開放下載的時間是 校外不公開

Your IP address is 18.116.40.177
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code