Responsive image
博碩士論文 etd-0728105-145443 詳細資訊
Title page for etd-0728105-145443
論文名稱
Title
微球透鏡陣列製程及其光學性能分析
Fabrication of Micro-ball Lenses Array and its Optical Performance Analysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-15
繳交日期
Date of Submission
2005-07-28
關鍵字
Keywords
光纖開關、微球透鏡、耦合、微帽蓋、頸部尺寸
microcap, optical fiber switch, microball lens, coupling, neck size
統計
Statistics
本論文已被瀏覽 5661 次,被下載 0
The thesis/dissertation has been browsed 5661 times, has been downloaded 0 times.
中文摘要
隨著科技與人類資訊的蓬勃發展,人類對於光電及通訊系統等產品的需求越來越高。將半導體製程技術與各種微光學元件結合可形成一完整的微光學系統,此系統可具有分光、光束偏折、聚焦、切換等功能。而將微光學元件整合於基板上的製程可改善元件與元件間相對位移所造成的對準及固定的問題,且微細模具和陣列化製造的產品更可提升生產能力並將生產成本大大的降低。因此微光機電系統(Micro Optical Electro Mechanical System)技術被廣泛應用於如LCD之背光模組、投影機、光纖通訊系統等光電及通訊產品。
本文主要研究重點在於設計與研製微球透鏡陣列並且應用於光纖耦合。此微球透鏡陣列是一種能於垂直或非垂直方向聚光且具有較佳耦合效率之立體3D微球透鏡陣列,並利用半導體微製程技術製作V型溝槽(v-groove)以便微球透鏡及光纖可被固定以形成光纖開關耦合器系統。利用MEMS製程技術製作微帽蓋(microcap),並使用UV膠對其光纖開關耦合器進行系統封裝,以達到保護之功能,而系統亦可達成精密定位、降低成本等之業界需求。
Abstract
Along with the rising and flourishing development of the modern technology and human knowledge, the demands for optical-electric products and communication systems are getting more and more. By combining the semi-conductor technology process with micro optical elements, a complete micro optical system can be integrated. The functions of a micro optical system include beam-splitting, beam-light offsetting, focusing, and switching, etc. Letting micro optical elements be integrated on a substrate, the fix and alignment problems, which are caused by the relative displacements between the elements, can be improved. Also, the production rate can be increased and cost can be reduced if the products are made by micro mold and array fabricated process. Thus, the technology of the Micro Optical Electro Mechanical System is widely applied to manufacture the products of optical-electric and communication, such as the backlight module of a LCD, projector, and optical fiber communication system, etc.
The main purpose of this study is to design and fabricate a microball-lens array, and to apply it to couple optical fibers. The proposed product is a 3D micro-ball-lens array with vertical and non-vertical focus directions and better coupling efficiency. A v-groove is fabricated by using semi-conductor technology in order to fix the micro-ball-lens array and optical fiber such that an optical fiber switch coupling system can be obtained. The packaging of the optical fiber switch coupling system is formed by UV-cure and a microcap which is fabricated by MEMS. It can provide the protection to the system. Also, the completed system can achieve the demands of the industry fields such as precise localization, cost reduction and so on.
目次 Table of Contents
Table of Contents /i
List of Figures / iv
Abstract (In Chinese) /ix
Abstract (In English) /x

Chapter 1 Introduction /1
1.1 Background /1
1.2 Research motivation and purpose /3
1.3 Review of Literature /4
1.3.1 Microball Lens Array Technique /4
1.3.2 Optical Fiber Switching Technique /7
1.3.3 Metal Packaging Technique /9

Chapter 2 Study on the Geometry of Microball Lens Array by Novel Batch-fabrication Technique /12
2.1 Introduction /12
2.2 Fabrication Method of Microball Lens Array /12
2.2.1 Experimental Procedure /12
2.2.2 Experimental Principle /13
2.2.3 Lithography Process /14
2.2.4 Reflow Process /15
2.3 Linear Regression Analysis /16

Chapter 3 Microball Lens of Optical Fiber Switch Fabrication Optical Coupling /22
3.1 Introduction /22
3.2 Structure Fabrication /22
3.2.1 Structure Design /22
3.2.2 Out-of-plane Optical Switch /23
3.2.3 Framework /24
3.3 Fabrication Method of Optical Switch /24
3.3.1 Optical Switch /24
3.3.2 Optical Framework /26

Chapter 4 The Packaging Process of Metal Microcap under Room Temperature Status /35
4.1 Introduction /35
4.2 Fabrication Method of Microcap /36
4.2.1 Metal Microcap Fabrication Process /36
4.2.2 Pattern Transferred process /36
4.2.3 Cavity forming process /37
4.2.4 Sputtering process /38
4.2.5 Passivation Treatment /38
4.2.6 Electroforming Process /38
4.2.7 Bonding and Separating /40
4.2.8 The UV Adhesives Characteristic /41

Chapter 5 Results and Discussions /49
5.1 Microball Lens Array Technique /49
5.1.1 Effects of Primary Material Diameter /49
5.1.2 Effects of Reflow Temperature /49
5.1.3 Effects of Aspect Ratio of Dual-layer System /50
5.1.4 Effects of Reflow Process and Microball Lens Surface Energy /50
5.1.5 Effects of PI Thickness /51
5.1.6 Relationships Between The Microball Size and Necking Phenomenon of Microball /52
5.1.7 The Surface Roughness of The Lens /53
5.1.8 Results /54
5.2 Optical Fiber Switching Technique /55
5.2.1 Discussions of Optical Fiber Switching Technique /55
5.2.2 Results /57
5.3 Metal Microcap Technique /58
5.3.1 Experimental Results /58
5.3.2 Results /60

Chapter 6 Summary and Future Prospect /90
6.1 Summary /90
6.2 Future Prospect /91

References /92
參考文獻 References
1. B. Ezell, “Making microlens backlights grow up,” Information Display, 5, pp. 42-45, 2001.
2. M. E. Motamedi, “Micro-opto-electro-mechanical system,” Optical Engineering, 33(11), pp. 3505-3517, 1994.
3. L. S. Huang, S. S. Lee, E. Motamedi, M. C. Wu, and C. J. Kim, “MEMS packaging for micro mirror switches,” 48th IEEE in Electronic Components and Technology Conference 25-28, pp. 592-597, 1998.
4. M. C. Wu, L. Y. Lin, S. S. Lee, and C. R. King, “Free space integrated optics realized by surface micromachining,” Int. J. High Speed Electronics and Systems, 8(2), pp.283-297, 1997.
5. H. Toshiyoshi, and H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” IEEE J. Microelectromech. Systems, 5(4), pp. 231-237. 1996.
6. S. Sinzinger and J. Jahns, “Microoptics,” WILEY-VCH Verlag GmbH, Weinheim, pp. 85-103, 1999.
7. Z. D. Popovic, R. A. Sprague, and G. A. Neville Connell, “Technique for the monolithic fabrication of microlens arrays,” Applied Optics, 27, pp. 1281-1284, 1988.
8. M. C. Hutley, “Optical techniques for the generation of microlens arrays,” Journal of Modern Optics, 37, pp. 253-265, 1990.
9. M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, ”Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Optical Engineering, 22(11), pp. 3556-3566, 1994.
10. K. Zimmer, D. Hirsch, and F. Bigl, “Excimer laser machining for the fabrication of analogous microstructures,” Applied Surface Science, 96-98, pp. 425-429, 1996.
11. M. Stern and T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Optical Engineering, 33(11), pp. 3547-3550, 1994.
12. M. E. Matamedi, M. P. Griswold, and R. E. Knowlden, “Silicon microlenses for enhanced optical coupling to silicon focal planes,” Proc. SPIE, Vol. 1544, Miniature and Micro-Optics: Fabrication and System Applications, pp. 22-32, 1991.
13. W. R. Cox, T. Chen, and D. Hayes, “Micro-optics fabrication by ink-jet printing,” Optics & Photonics News, 12(6), pp. 32-35, 2001.
14. J. Gottert and J. Mohr, “Characterization of micro-optical components fabricated by deep-etch x-ray lithography,” Proc. of SPIE, Vol. 1506 Micro-Optics II, pp. 170-178, 1991.
15. S. K. Lee, K. C. Lee, and S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” Journal of Micromechanics and Microengineeing, 12, pp. 334-340, 2002.
16. H. Yang, M. C. Chou, A. Yang, C. K. Mu, and R. F. Shyu, “Realization of fabricating microlens array in mass production,” Proc. of SPIE, Vol. 3739, Optical Fabrication and Testing , pp. 178-185, 1999.
17. H. Yang, C. T. Pan, and M. C. Chou, “Ultra-fine machining tool/molds by LIGA technology,” Journal of Micromechanics and Microengineering, 11, pp. 94-99, 2001.
18. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist, ” Measurement Science and Technology, 1, pp.759-766, 1990.
19. Z. D. Popovic, R. A. Sprague, and G. A. Neville Connell, “Technique for Monolithic Fabrication of Microlens Arrays,” Applied Optics, 27(7), pp.1281-1284, 1988.
20. M. C. Hutley, R. F. Stevens, and D. Daly, “The manufacture of microlens arrays and fan-out gratings in photoresist,” Optical Connection and Switching Networks for Communication and Computing, pp. 11/1-11/3, 1990.
21. V. Russo, G. C. Righini, S. Sottini, and S. Trigari, “Lens-ended fibers for medical applications: A New Fabrication Technique,” Applied Optics, 23(19), pp. 3277-3283, 1984.
22. G. D. Khoe, J. Poulissen, and H. M. de Vrieze, “Efficient coupling of laser diodes to tapered monomode fibers with high-index end,” Electronics Letters, 17th, 19(6), March, pp.205-207, 1983.
23. W. R. Cox, C. Guan, D. J. Hayes, and D. B. Wallace, “Microjet printing of micro-optical interconnects,” The International Journal of Microcircuits and Electronic Packaging, 23(3), pp.346-351, 2000.
24. S. C. Shen, C. T. Pan, M. C. Chou, and H. P. Chou, “Electromagnetic optical switch for optical network communication,” Journal of Magnetism and Magnetic Materials, 239, pp.610-613, 2001.
25. C. T. Pan, “Silicon-Based Coupling Platform for Optical Fiber Switching in Free Space,” Journal of Micromechanics and Microengineering, 14, pp. 129–137, 2004.
26. C. T. Pan, C. H. Chien, and C. C. Hsieh, “Technique of Microball Lens Formation for Efficient Optical Coupling,” Applied Optics, Vol. 43, Issue 32, pp. 5939-5946, 2004.
27. N. R. Draper, and H. Smith, “Applied regression analysis”, New York : Wiley, 1998.
28. H. Fujita, “Microactuators and Micromachine,” Proceedings of the IEEE, Vol. 86, No.8, pp.1721-1732, 1998.
29. W. S. Trimmer, “Microrobots and Micromechanical System,” Sensors and Actuators A, Vol. 19, No. 3, pp.267-287, 1989.
30. M. Hoffmann, P. Kopka, and E. Voges, “All-Silicon Bistable Micromechanical Fiber Switch Based on Advanced Bulk Micromechining,” IEEE Journal of Microelectromech. Systems, Vol. 5, No.5, pp.211-217, 1997.
31. H. Toshiyoshi, D. Miyauchi, and H. Fujita, “Electromagnetic Torsion Mirrors for Self-Aligned Fiber-Optic Crossconnectors by Silicon Micromachining, ” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No.1, pp.10-17, 1999.
32. A. Yasseen, J. N. Mitchell, J. F. Klemic, and D. A. Smith, “A Rotary Electrostatic Micromotor 1
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.12.41.106
論文開放下載的時間是 校外不公開

Your IP address is 3.12.41.106
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code