Responsive image
博碩士論文 etd-0728106-140246 詳細資訊
Title page for etd-0728106-140246
論文名稱
Title
氧化物半導體之光學特性研究
Studies of Optical properties of Oxide Semiconductor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-18
繳交日期
Date of Submission
2006-07-28
關鍵字
Keywords
氧化鋅、拉曼散射光譜、光致螢光光譜
Raman, PL, ZnO
統計
Statistics
本論文已被瀏覽 5640 次,被下載 5924
The thesis/dissertation has been browsed 5640 times, has been downloaded 5924 times.
中文摘要
氧化物半導體近來因為優異的光電特性,引起廣泛的研究,其中又以氧化鋅最受關注。研究顯示,一維的氧化鋅奈米線具有高穩定性、良好的發光效率、低臨界電壓、高放射電流密度和耐久性等特性。本研究利用光致螢光光譜和拉曼散射光譜來探討氧化鋅奈米線的光學特性。
我們的氧化鋅奈米線樣品是以無催化劑輔助的方式製作,如此可避免殘留金屬成份的影響。室溫光致螢光光譜檢測發現,氧化鋅奈米線線徑越小紫外光的發光強度越強,這點與他人用金屬催化劑輔助方式所成長的奈米線不同。此外,隨線徑變小,紫外光發光中心位置會有紅移現象,我們推測此紅移可能是熱效應所造成。
氧化鋅奈米線的位置分佈、排列方向和線徑分佈越均勻,室溫光致螢光光譜紫外光的半高寬越窄。此外,紫外光半高寬越窄,紫外光積分強度與綠光積分強度比越高,代表奈米線上的缺陷越少。
變溫光致螢光光譜、Varshni關係式擬合結果發現氧化鋅奈米線的發光的能量位置大約在3.29 eV左右,而氧化鋅緩衝層大約在3.24 eV左右,所以我們發現不同結構的紫外光發光中心位置也不盡相同。
利用拉曼散射光譜與SEM圖,我們發現樣品有A1(LO)和E1(LO)振動態是由奈米線倒下後不規則方向所造成。
Abstract
Oxide semiconductors, especially ZnO, have been a subject of considerable research interest due to their interesting optoelectronic properties. Recent researches have shown that one-dimensional ZnO nanowires have characteristics of high stability, good luminescence efficiency, low critical voltage, high radiate current density and durability. In this study photoluminescence (PL) spectroscopy and Raman scattering spectroscopy were utilized to explore the optical properties of ZnO nanowires.
The ZnO nanowires were grown on a-plane sapphire substrates by a simple vapor phase transport method without metal catalysts. Such a catalyst-free synthesis can avoid the metal remnants in the nanowires. Room temperature PL measurement showed that the intensity of ultraviolet (UV) luminescence increases as the average diameter of ZnO nanowires decreases. Such an observation is quite different from the reported PL data of nanowires grown with the use of catalysts. Moreover, an “anomalous” redshift of the UV peak position with diminished wire diameter was observed. We attribute this redshift to the effects caused by the laser heating.
The full-width at half maximum (FWHM) of the UV luminescence from the ZnO nanowires was found to decrease with better uniformities of wire distribution, alignment, and diameter. In addition, the ratio of UV to green emission integrated intensities becomes higher as the FWHM of the UV peak decreases. Thus the FWHM of the UV luminescence seems to be a measure of the uniformity and crystallinity (defects) of ZnO nanowires.
Temperature-dependent PL and Varshni relation fitting results show the center position of UV luminescence is 3.29 eV for ZnO nanowires, and 3.24 eV for ZnO buffer layer structures. The Raman spectroscopy and SEM studies showed that the samples with randomly oriented nanowire structures exhibit the A1(LO) and E1(LO) vibrating modes.
目次 Table of Contents
致謝...................................................Ⅰ
中文摘要...............................................Ⅲ
英文摘要...............................................Ⅳ
目錄...................................................Ⅵ
圖目錄.................................................Ⅷ
表目錄.................................................Ⅹ
第一章 導論............................................1
1.1 氧化鋅的特性與應用.................................1
References.............................................7
第二章 量測理論與技術..................................8
2.1 X光繞射儀..........................................8
2.1.1 X光的特性........................................8
2.1.1.1 電子的突然減速.................................8
2.1.2 X光對晶體之繞射..................................9
2.2 光致螢光光譜......................................11
2.2.1 螢光導論........................................11
2.2.2 光致螢光光譜....................................12
2.2.3 導電帶與價電帶躍遷復合放射......................16
2.2.3.1 直接能隙帶間躍遷復合放射......................16
2.2.3.2 間接能隙帶間躍遷復合放射......................18
2.2.3.3 自由與束縛態間的躍遷..........................19
2.2.3.4 激子復合放射..................................20
2.2.4 束縛激子復合放射發光光譜........................23
2.2.4.1 束縛激子......................................24
2.2.4.2 束縛激子復合放射..............................25
2.2.5 光致螢光光譜的架構..............................26
2.2.6 光致螢光光譜量測方法............................28
2.3 拉曼散射光譜......................................29
2.3.1 導論............................................29
2.3.2 非彈性散射的巨觀理論............................30
2.3.3 拉曼張量與選擇定律..............................33
2.3.4 固體拉曼散射光譜................................34
2.3.5 拉曼散射光譜的架構..............................34
2.3.6 拉曼散射光譜量測方法............................36
References............................................38
第三章 實驗架構與步驟.................................40
3.1 氧化鋅奈米線的成長機制............................40
3.1.1 實驗裝置及架構..................................40
3.1.2 實驗材料........................................41
3.1.3 基板前置清洗....................................41
References............................................44
第四章 結果與討論.....................................45
4.1 樣品資訊..........................................45
4.2 電子顯微鏡的結果..................................46
4.3 X光繞射儀的結果...................................53
4.4 氧化鋅奈米線光致螢光光譜..........................56
4.4.1 氧化鋅奈米線室溫光致螢光光譜....................56
4.4.2 氧化鋅奈米線改變激發能量光致螢光光譜............68
4.4.3 氧化鋅奈米線變溫光致螢光光譜....................70
4.5 氧化鋅奈米線室溫拉曼散射光譜......................82
References............................................88
第五章 結論...........................................91
參考文獻 References
[1.1] Sanghyun Ju, et al., Nano Lett. 5, 2281 (2005)
[1.2] M. H. Huang, et al., Science 292, 1897 (2001)
[1.3] Ya. I. Alivov, et al., Appl. Phys. Lett. 83, 4719 (2003)
[1.4] Yoshiyuki Nasuno, et al., Appl. Phys. Lett. 88, 071909 (2006)
[1.5] Peter Schroer, et al., Phys. Rev. B 47, 6971 (1993)
[1.6] H. Watanabe, M. Wada, T. Takahashi, J. J. A. P. 3, 671 (1964)
[1.7] B. K. Meyer, et al., phys. stat. sol. (b) 241, 231-260 (2004)
[1.8] X. L. Wang, J. Song, Science 312, 242 (2006)
[1.9] Koike J., Tanaka H., Leki H., Jpn J. Appl. Phys. 34, 2678 (1995)
[1.10] T. G. Pedersen, phys. Stat. sol. (c) 2, 4026-4030 (2005)
[1.11] Bingqiang Cao, et al., Nanotechnology 16, 1734-1738 (2005)
[1.12] A. Wander, et al., Phys. Rev. Lett. 86, 3811 (2001)
[1.13] Olga Dulub, et al., Phys. Rev. Lett. 90, 016102 (2003)
[1.14] T. G. Pedersen, Phys. Stat. Sol. (c) 2, 4026-4030 (2005)
[2.1] R. K. Willardson, Albert C. Beer, Semiconductors and Semimetals (Academic press, 1972)
[2.2] D. R. Vij, Luminescence of Solids (Plenum Press, 1998)
[2.3] Peter Y. Yu, Manuel Cardona, Fundamentals of Semiconductors 3rd edition (Springer, 2001)
[2.4] R. A. Meyers, Encyclopedia of Analytical Chemistry (John Wiley & Sons Ltd, Chichester, 2000)
[2.5] Micheal H. Huang, et al., Science 292, 1897 (2001)
[2.6] Kazuki Bando, Taiki Sawabe, Koji Asaka, Yasuaki Masumoto, J. Lumin. 108, 385-388 (2004)
[2.7] X. Q. Zhang, Ikuo Suemune, H. Kumano, Z. G. Yao, S. H. Huang, J. Lumin. In press (2006)
[2.8] W. Liu, et al., Appl. Phys. Lett. 88, 092101 (2006)
[2.9] Y. M. Lu, et al., J. Lumin. 119-120, 228-232 (2006)
[2.10] R. R. Sharma, Sergio Rodriguez, Phys. Rev. 153, 823 (1967)
[2.11] J. Y. Lin and H. X. Jiang, Phys. Rev. B 40, 10025 (1989)
[2.12] T. C. Damen, S. P. Porto, B. Tell, Phys. Rev. 142, 570 (1966)
[2.13] 程光熙, 拉曼 布里淵散射 (科學出版社, 2001)
[2.14] 汪建民, 材料分析 (中國材料科學學會, 1998)
[2.15] S. Perkowitz, Optical Characterization of Semiconductors: Infrard, Raman, and Photoluminescence Spectroscopy (Academic Press, 1993)
[2.16] Grosso, P. Parravicini, Solid State Physics (Elsevier, 2000)
[2.17] B. Fultz, J. M. Howe, Transmission Electron Microscopy and Diffractometry of Materials (Springer 2001)
[3.1] 蔡舜麒, 國立台北科技大學光電工程系碩士班碩士論文, (2005)
[4.1] X. T. Zhang, et al., J. Lumin. 99, 149-154 (2002)
[4.2] Y. Z. Lv, et al., J. Lumin., In press (2006)
[4.3] B. J. Chen, et al., Phsyca E 21, 103-107 (2004)
[4.4] A. B. Djurisic, et al., Appl. Phys. Lett. 88, 103107 (2006)
[4.5] S. Studenikin, et al., J. Appl. Phys. 84, 2287 (1998)
[4.6] L. Spanhel, M. A. Anderson, J. Am. Chem. Soc. 113, 2826 (1991)
[4.7] C. Geng, et al., Adv. Funct. Mater. 14, 589 (2004)
[4.8] X. L. Xu, et al., J. Crystal Growth 223, 201-205 (2001)
[4.9] B. K. Meyer, et al., Phys. Stat. Sol. (b) 241, 231-260 (2004)
[4.10] W. L. Xu, et al., Chem. Phys. Lett. 411, 37 (2005)
[4.11] D. W. Hamby, et al., J. Appl. Phys. 93, 3214 (2003)
[4.12] H. Priller, et al., J. Lumin. 112, 173 (2005)
[4.13] Chunping Li, et al., J. Lumin., In press (2006)
[4.14] W. Lee, M. et al., Appl. Phys. Lett. 85, 6167 (2004)
[4.15] Y. P. Varshni, Physica 34, 149 (1967)
[4.16] X. T. Zhang, et al., J. Phys. D 34, 3430 (2001)
[4.17] J. Grabowska, et al., Phys. Rev. B 48, 115439 (2005)
[4.18] Michael A. Stroscio, Mitra Dutta, Phonons in Nanostructures (Cambridge, 2001)
[4.19] J. M. Calleja, Manuel Cardona, Phys. Rev. B 16, 3753 (1977)
[4.20] T. C. Damen, S. P. S. Porto, B. Tell, Phys. Rev. 142, 570 (1966)
[4.21] Y. Huang,et al., Mater. Sci. Eng. B 97, 111-116 (2003)
[4.22] Y. Du, Appl. Phys. A 76, 171-176 (2003)
[4.23] H. T. Ng, et al., Appl. Phys. Lett. 82, 2023 (2003)
[4.24] I. Shalish, et al., Phys. Rev. B 69, 245401 (2004)
[4.25] V. Ischenko, et al., Adv. Funct. Mater. 15, 1945-1954 (2005)
[4.26] G. H. Du, et al., Appl. Phys. Lett. 88, 243101 (2006)
[4.27] B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)
[4.28] M. H. Huang, et al., Adv. Mater. 13, 113 (2003)
[4.29] Charles P. Poole Jr., Frank J. Owens, Introduction to Nanotechnology (Wiley 2003)
[4.30] T. G. Pedersen, Phys. Stat. Sol. (c) 2, 4026-4030 (2005)
[4.31] J. Grabowska, et al., J. Mater. Sci. 16, 397-401 (2005)
[4.32] D. Li, et al., Appl. Phys. Lett. 85, 1601 (2004)
[4.33] K. Vanheusden, et al., J. Appl. Phys. 79, 7983 (1996)
[4.34] B. Cao, et al., Nanotechnology 16, 1734-1738 (2005)
[4.35] Cao, Cal, Zeng, Appl. Phys. Lett. 88, 161101 (2006)
[4.36] C. W. Cheng, Appl. Phys. Lett. 88, 241905 (2006)
[4.37] K. Johnston,et al., Phys. Rev. B 73, 165212 (2006)
[4.38] C. Roy, et al., Thin Solid Films 436, 273-276 (2003)
[4.39] M. Tzolov, et al., Thin Solid Films 379, 28-36 (2000)
[4.40] Charles Kittle, Introduction to Solid State Physics 7th edition (Wiley 1996)
[4.41] M. Rajalkshmi, J. Appl. Phys. 87, 2445 (2000)
[4.42] K. A. Alim, Appl. Phys. Lett. 86, 053103 (2005)
[4.43] X. Wang, Appl. Phys. Lett. 84, 4941 (2004)
[4.44] H. Iwanaga, J. Mater. Sci. 35, 2451-2454 (2000)
[4.45] Ü. Özgür, et al., J. Appl. Phys. 98, 041301 (2005)
[4.46] H. C. Hsu, et al., Nanotechnology 17, 1404 (2006)
[4.47] H. J. Ko, et al., Appl. Phys. Lett. 76, 1905 (2000)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code