Responsive image
博碩士論文 etd-0728106-150917 詳細資訊
Title page for etd-0728106-150917
論文名稱
Title
YDL100c基因缺失對釀酒酵母在t-BOOH下生長的影響
The effect of YDL100c deficiency on the growth of Saccharomyces cerevisiae in the presence of t-BOOH
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-26
繳交日期
Date of Submission
2006-07-28
關鍵字
Keywords
YDL100c基因、釀酒酵母
YDL100c, Saccharomyces cerevisiae, tert-butyl hydroperoxide, t-BOOH
統計
Statistics
本論文已被瀏覽 5696 次,被下載 16
The thesis/dissertation has been browsed 5696 times, has been downloaded 16 times.
中文摘要
本實驗為了研究YDL100c基因產物對S. cerevisiae生長於氧化壓力下的影響,將野生株(WT)及YDL100c基因缺失的突變株(KO)細胞,培養於30oC並添加氧化劑tert-butyl hydroperoxide(t-BOOH),6小時後,針對細胞內的抗氧化防禦系統的表現、分子氧化程度、膜脂質過氧化程度、trehalose的累積及glutathione(GSH)的含量進行分析。初步結果為添加t-BOOH後,KO菌株的生長較WT菌株落後且落後的原因為細胞死亡,而無論WT或KO菌株,細胞內分子氧化程度皆比未添加氧化劑時減少,但膜脂質過氧化的程度皆稍微增加,顯示t-BOOH雖未對細胞內分子造成氧化性的損傷但對細胞膜仍有影響。t-BOOH對WT與KO菌株的catalase活性皆有促進作用,但造成KO菌株細胞內的GSH含量較WT菌株少而trehalose的含量則較WT菌株多。當利用RT-PCR分析相關的防禦基因的mRNA表現量時,對KO菌株而言,添加t-BOOH後,GSH1、CTT1、TPS1、TSL1與NTH1的mRNA表現量均低於WT菌株,而SOD1、TRR1及TRX1的表現則無差異,顯示YDL100c基因的缺失對S. cerevisiae生長於t-BOOH下除了影響general stress response的調控外,亦與specific stress response有關聯。其中,GSH1的表現與細胞內GSH的含量相符,而trehalose代謝相關基因的變化也與細胞內trehalose的含量一致,但是CTT1的表現量卻與catalase的活性分析不符。綜合以上結果推測本實驗中KO菌株細胞死亡的原因與細胞內GSH含量的下降及trehalose的累積最為相關。
Abstract
To study the role of YDL100c during the growth of Saccharomyces cerevisiae in the presence of oxidant, the wild type strain (WT) and YDL100c disrupted strain (KO) were grown at 30oC for 6 hr after adding 0.25 mM of tert-butyl hydroperoxide (t-BOOH). The cells of both strains were assayed for the expression of anti-oxidant system, trehalose accumulation, intracellular molecular oxidation level, membrane lipid peroxidation, and glutathione (GSH) content. The results show that growth of KO is slower than that of WT and the cause of growth delay is the cell death. The data also show that the molecular oxidation level is lower but the lipid peroxidation of membrane is higher in KO compared with WT in the presence of t-BOOH, indicating that ROS do cause the damage on membrane. Further, analysis of the expression of cellular defense-related genes show that expressions of GSH1, CTT1, TPS1, TSL1, and NTH1 in KO are lower than in WT, but expressions of SOD1, TRR1 and TRX1 have no difference, demonstrating that the deletion of YDL100c in S. cerevisiae affects the general and specific stress response when grown in the presence of t-BOOH. In general, the decrease in CTT1 expression is not consistent with the catalase activity assay, however, decreased expressions of GSH1 and genes involved in trehalose metabolism are consistent with the decreased GSH content and increased trehalose accumulation in KO compared with WT. Therefore, the cause of KO cell death in the presence of t-BOOH is most likely related to the decrease in cellular GSH level and trehalose accumulation.
目次 Table of Contents
背景介紹 -------------------------------------------------------------- 1
材料與方法-------------------------------------------------------------- 12
結果 -------------------------------------------------------------- 20
討論 -------------------------------------------------------------- 24
參考文獻 -------------------------------------------------------------- 30
表 -------------------------------------------------------------- 35
圖 -------------------------------------------------------------- 36
附表 -------------------------------------------------------------- 44
附圖 -------------------------------------------------------------- 46
參考文獻 References
1. Rosen, B.P., and Borbolla, M.G. A plasmid-encoded arsenite pump produces arsenite resistance in Escherichia coli. Biochem Biophys Res Commun. 1984, 124:760-5.
2. San Francisco, M.J., Tisa, L.S., and Rosen, B.P. Identification of the membrane component of the anion pump encoded by the arsenical resistance operon of R-factor R733. Mol Microbiol. 1989, 3:15-21.
3. Tisa, L.S., and Rosen, B.P. Molecular characterization of an anion pump. The ArsB protein is the membrance anchor for the ArsA protein. J Biol Chem. 1990, 265:190-4.
4. Godon, C., Lagniel, G., Lee, J., Buhler, J.M., Kieffer, S., Perrot, M., Boucherie, H., Toledano, M.B., and Labarre, J. The H2O2 stimulon in Saccharomyces cerevisiae. Biochemistry and Molecular Biology. 1998, 273:22480-9.
5. Higgins, V.J., Alic, N., Thorpe, G.W., Breitenbach, M., Larsson, V., and Dawes, I.W. Phenotypic analysis of gene deletant strains for sensitivity to oxidative stress. Yeast. 2002, 19: 203–214.
6. Shen, J., Hsu, C.M., Kang, B.K., Rosen, B.P., and Bhattacharjee, H. The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. BioMetals. 2003, 16: 369–378.
7. Boskovic, J., Soler-Mira, A., Garcia-Cantalejo, J.M., Ballesta, J.P., Jimenez, A., and Remacha, M. The sequence of a 16 691 bp segment of Saccharornyces cerevisiae chromosome IV identifies the D UNl, PMTl,PMTS, SRPl4 and DPRl genes, and five new open reading frames. Yeast. 1996, 12: 1377-1384.
8. 洪詩雅.(2002)國立中山大學生物科學研究所碩士論文.
9. Aherne, S.A., and O'Brien, N.M. Mechanism of protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide- and menadione-induced DNA single strand breaks in Caco-2 cells. Free Radic Biol Med. 2000, 29:507-14.
10. Zuniga, S., Boskovic, J., Jimenez, A., Ballesta, J.P., and Remacha, M. Disruption of Six Saccharomyces cerevisiae Novel genes and phenotypic analysis of the deletants. Yeast. 1999, 15: 945–953.
11. 陳涵茵.(2004)國立中山大學生物科學研究所碩士論文.
12. Davidson, J.F., Whyte, B., Bissinger, P.H., and Schiestl, R.H. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Microbiology. 1996, 93:5116-5121.
13. 郭雅帛.(2002)國立中山大學生物科學研究所碩士論文.
14. Estruch, F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev. 2000, 24:469-86.
15. Espindola Ade, S., Gomes, D.S., Panek, A.D., and Eleutherio, E.C. The role of glutathione in yeast dehydration tolerance. Cryobiology. 2003, 47:236-241.
16. Moskvina, E., Schuller, C., Maurer, C.T., Mager, W.H., and Ruis, H. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast. 1998, 14:1041-50.
17. Rodrigues-Pousada, C.A., Nevitt, T., Menezes, R., Azevedo, D., Pereira, J., and Amaral, C. Yeast activator proteins and stress response: an overview. FEBS Letters. 2004, 567:80-5.
18. Ruis, H., and Schuller, C. Stress signaling in yeast. Bioessays. 1995, 17:959-65.
19. Hasan, R., Leroy, C., Isnard, A.D., Labarre, J., Boy-Marcotte, E., and Toledano, M.B. The control of the yeast H2O2 response by the Msn2/4 transcription factors. Molecular Microbiology. 2002, 45:233-241.
20. Martinez-Pastor, M.T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H., and Estruch, F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). The EMBO Journal 1996, 15:2227-2235.
21. Sugiyama, K., Kawamura, A., Izawa, S., and Inoue, Y. Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Biochem. J. 2000, 352:71-8.
22. Toone, W.M., and Jones, N. AP-1 transcription factors in yeast. Oncogenes and cell proliferation. 1999, 9: 55-61.
23. Costa, V., and Moradas-Ferreira, P. Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med. 2001, 22:217-46.
24. Thorpe, G.W., Fong, C.S., Alic, N., Higgins, V.J., and Dawes, I.W. Cell have distinct mechanisms to maintain protection against different reactive oxygen species:Oxidative-stress-response genes. PNAS. 2004, 101:6564-9.
25. Pereira, M.D., Herdeiro, R.S., Fernandes, P.N., Eleutherio, E.C., and Panek, A.D. Targets of oxidative stress in yeast sod mutants. Biochimica et Biophysica Acta. 2003, 1620:245– 251.
26. Lapshina, E.A., Zavodnik, I.B., Labieniec, M., Rekawiecka, K., and Bryszewska, M. Cytotoxic and genotoxic effects of tert-butyl hydroperoxide on Chinese hamster B14 cells. Mutation Research. 2005, 583:189–197.
27. Prouzet-Mauleon, V., Monribot-Espagne, C., Boucherie, H., Lagniel, G., Lopez, S., Labarre, J., Garin, J., and Lauquin, G.J. Identification in Saccharomyces cerevisiae of a new stable variant of alkyl hydroperoxide reductase 1 (Ahp1) induced by oxidative Stress. The Journal of Biological Chemistry. 2002, 277:4823-4830.
28. Cha, M.K., Choi, Y.S., Hong, S.K., Kim, W.C., No, K.T., and Kim, I.H. Nuclear thiol peroxidase as a functional alkyl-hydroperoxide reductase necessary for stationary phase growth of Saccharomyces cerevisiae. The Journal of Biological Chemistry. 2003, 278:24636-24643.
29. Trotter, E.W., and Grant, C.M. Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae. Molecular Microbiology. 2002, 46:869–878.
30. Toledano, M.B., Delaunay, A., Biteau, B., Spector, D., and azevedo, D. 6 Oxidative stress responses in yeast. Current Genetics. 2003, 1:241-78.
31. Jamieson, D.J. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast. 1998:1511-27.
32. Maris, A.F., Kern, A.L., Picada, J.N., Boccardi, F., Brendel, M., and Henriques, J.A. Glutathione, but not transcription factor Yap1, is required for carbon source-dependent resistance to oxidative stress in Saccharomyces cerevisiae. Curr Genet. 2000, 37:175-182.
33. Grant, C.M., MacIver, F.H., and Dawes, I.W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet. 1996, 29:511–5.
34. Grant, C.M., Perrone, G., and Dawes, I.W. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications. 1998, 253:893-8.
35. Garrido, E.O., and Grant, C.M. Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Molecular Microbiology. 2002, 43:993-1003.
36. Hazell, B.W., Nevalainen, H., and Attfield, P.V. Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively. FEBS Lett. 1995, 377:457-60.
37. Attfield, P.V. Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett. 1987, 225:259-63.
38. Benaroudj, N., Lee, D.H., and Goldberg, A.L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem. 2001, 276:24261-7.
39. Bell, W., Sun, W., Hohmann, S., Wera, S., Reinders, A., De Virgilio, C., Wiemken, A., and Thevelein, J.M. Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem. 1998, 273:33311-9.
40. Singer, M.A., and Lindquist, S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell. 1998, 1:639-48.
41. Pedreno, Y., Gimeno-Alcaniz, J.V., Matallana, E., and Arguelles, J.C. Response to oxidative stress caused by H2O2 in Saccharomyces cerevisiae mutants deficient in trehalase genes. Arch Microbiol. 2002, 177:494-9.
42. Zahringer, H., Thevelein, J.M., and Nwaka, S. Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol. 2000, 35:397-406.
43. Moradas-Ferreira, P., Costa, V., Piper, P., and Mager, W. The molecular defences agsinst reactive oxygen species in yeast. Molecular Microbiology. 1996, 19:651-8.
44. Fernandes, L., Rodrigues-Pousada, C., and Struhl, K. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Molecular and Cellular Biology. 1997, 17:6982–6993.
45. Tsuzi, D., Maeta, K., Takatsume, Y., Izawa, S., and Inoue, Y. Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Letters. 2004, 565:148-154.
46. Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., and Toledano, M.B. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. The Journal of Biological Chemistry. 1999, 274:16040-6.
47. Moye-Rowley, W.S. Regulation of the transcriptional tesponse to oxidative stress in fungi: Similarities and differences. Eukaryotic Cell. 2003, 2:381-9.
48. Lee, J., Spector, D., Godon, C., Labarre, J., and Toledano, M.B. A new antioxidant with alkyl hydroperoxide defense properties in yeast. Biol Chem. 1999, 274:4537-44.
49. Afri, M., Frimer, A.A., and Cohen, Y. Active oxygen chemistry within the liposomal bilayer. Part IV: Locating 2',7'-dichlorofluorescein (DCF), 2',7'-dichlorodihydrofluorescein (DCFH) and 2',7'-dichlorodihydro
fluorescein diacetate (DCFH-DA) in the lipid bilayer. Chem Phys Lipids. 2004 , 131:123-33.
50. Jakubowski, W., and Bartosz, G. 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int. 2000, 24:757-60.
51. Steels, E.L., Learmonth, R.P., and Watson, K. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology. 1994, 140:569-76.
52. Cyrne, L., Martins, L., Fernandes, L., and Marinho, H.S. Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase. Free Radic Biol Med. 2003, 34:385-93.
53. Singer, M.A., and Lindquist, S. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 1998,
16:460-8.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.208.25.215
論文開放下載的時間是 校外不公開

Your IP address is 44.208.25.215
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code