Responsive image
博碩士論文 etd-0728107-020059 詳細資訊
Title page for etd-0728107-020059
論文名稱
Title
複晶矽薄膜電晶體之可靠度分析與劣化機制探討
Reliability and Degradation Mechanism of Polysilicon Thin-Film Transistor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-20
繳交日期
Date of Submission
2007-07-28
關鍵字
Keywords
複晶矽薄膜電晶體
Polysilicon Thin-Film Transistor
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
在這篇論文中,我們將研究低溫複晶矽薄膜電晶體(LTPS TFTs)在經過電性stress後的劣化機制,樣品為奇美公司所提供ELA TFTs;電性的stress可分為DC與AC兩種,首先,在DC stress方面,在固定汲極(drain)偏壓後,隨著閘極(gate)電壓的調變,所產生的劣化機制可分為兩種,分別為”熱載子效應”(hot carrier effect)以及”自我加熱效應”(self-heating effect),我們將討論此兩種效應所產生劣化機制,另外,我們也用量測電容方式來區分所產生的缺陷種類及位置。
Abstract
In this thesis, we will investigate the degradation of the Low-Temperature-Polycrystalline-Silicon TFTs(LTPS TFTS) under the electrical stress. The devices are offer by Chi Mei Optoelectronics. The two mechanisms of the electrical stress are ac and dc stress. On the dc stress, we can separate the two degradation mechanisms from fixed drain voltage and various the gate voltage. The first mechanism is hot carrier effect, and second is self-heating effect. We were study the degradation mechanisms cause by above-mentioned phenomenon. On the other hand, we were confirmed the position and type of the defects by measured capacitance.
In the ac stress, device degradation depends on the emission rate and energy of the hot carrier. We will study the degradation mechanism which fixed the drain voltage and various the Vg_low and falling time under different temperature. Another way of the ac stress condition will be used here. The drain and source are directly connected to ground. The gate is directly connected to the pulse. At this stress condition, carrier will push to the junction near the drain and source when gate pulse is switch from high to low. This degradation mechanism is the function of the temperature. We are going to employ a C-V measurement to examination of the defect cause by stress.
目次 Table of Contents
第一章 序論 1
1-1 概要 1
1-2 複晶矽薄膜電晶體應用於可曲饒式基版 3
參考文獻 4
第二章 元件製造及基本電性 7
2-1準分子雷射結晶技術 7
2-2 元件製造 8
2.3 複晶矽薄膜晶體基本特性 9
2.3.1 特性轉換曲線 9
2.3.2 複晶矽薄膜電晶體中缺陷 10
2.3.3 複晶矽薄膜電晶體的電容-電壓轉換曲線 12
2.3.4 Seto’ 模型 13
參考文獻 17
第三章 實驗儀器及參數粹取 20
3-1實驗設備 20
3-1-1實驗儀器 20
3-1-2 設置I-V量測平台 20
3-2 決定臨界電壓 21
3-3決定場效遷移率 23
3-4決定ON/OFF比例 23
3-5決定次臨界搖擺 24
3-6 決定平帶電壓 25
3-7 決定活化能 25
3-8決定陷阱密度 26
參考文獻 28
第四章 實驗結果與討論 29
4-1直流偏壓對低溫複晶矽薄磨電晶體的影響 29
4-2 低溫複晶矽薄膜電晶體自我加熱效應 30
4-2-1 自我加熱效應對低溫複晶矽薄膜電晶體所造成的劣化 30
4-2-2低溫複晶矽薄膜電晶體中電性的可逆行為 31
4-2-3 用量測電容方式來探討自我加熱效應後的劣化情形 31
4-3 閘極脈衝對低溫複晶矽薄膜電晶體的影響 33
4-4 交流偏壓效應與能態密度間關係 34
4-4-1實驗前的準備 34
4-4-2 交流偏壓效應對低溫複晶矽薄膜電晶體體所造成的劣化 34
4-4-3 電子捕獲與電子發射時間 35
4-4-4 電子發射與溫度間關係 36
參考文獻 38
第五章結論 39
圖示 40
表 格 72
參考文獻 References
[1.1]. H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., 157 (1989)
[1.2]. M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays ,” IEEE Trans. Electron Devices, vol. 48, pp. 845-851, 2001
[1.3]. H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., p.38, 1992
[1.4]. T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313,1995.
[1.5]. K. Yoshizaki, H. Takaashi, Y. Kamigaki, T.asui, K. Komori, and H. Katto, ISSCC Digest of Tech., p.166, 1985
[1.6]. N. D.Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French , “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol. 43, pp. 1930-1936, 1996.
[1.7]. T. Kaneko, U. Hosokawa, N. Tadauchi, Y. Kita, and H. Andoh, “400 dpi integrated contact type linear image sensors with poly-Si TFT's analog readout circuits and dynamic shift registers,” IEEE Trans. Electron Devices, Vol. 38, pp. 1086-1093, 1991
[1.8]. U. Hayashi, H. Hayashi, M. Negishi, T. Matsushita, Proc. of IEEE
Solid-State Circuits Conference (ISSCC), p. 266 , 1998.
[1.9].N.Yamauchi, U. Inava, and M. Okamura, “An integrated photodetectoramplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors,” IEEE Photonic Tech. Lett, Vol. 5, pp. 319-321, 1993.
[1.10]. M. G. Clark, IEE Proc. Circuits Devices Syst, Vol. 141, 133 (1994)
[1.11]. Noriyoshi Yamauchi, Jean-Jacques J. Hajjar and Rafael Reif, “Polysilicon Thin-Film Transistors with Channel Length and Width
Comparable to or Smaller than the Grain Size of the Thin Film,” IEEE Trans. Electron Devices, Vol. 38, pp 55-60, 1991
[1.12]. Singh Jagar, Mansun Chan, M. C. Poon, Hongmei Wang, Ming Qin, Ping K. Ko, Yangyuan Wang, “Single Grain Thin-Film-Transistor (TFT) with SOI CMOS Performance Formed by Metal-Induced-Lateral-Crystallization,” IEDM Tech. Dig., pp. 293-296,1999.
[1.13].K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys, Vol. 69, pp. 1703-1706, 1991.
[1.14]. T. J. King and K. C. Saraswat, “Low-temperature fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett, Vol. 13, pp. 309-311, 1992.
[1.15]. H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, “High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics,” IEDM Tech. Dig, Vol. 91, p. 563 (1991)
[1.16]. J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982
[1.17]. P. Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato, “Anomalous off-current mechanisms in n-channel poly-Si thin film
transistors.” Solid-State-Electronics, Vol.38, pp.2075-2079, 1995
[1.18]. M. Hack, I-W. Wu, T. H. King and A. G. Lewis, “Analysis of Leakage Currents in Poly-silicon Thin Film Transistors,” IEDM Tech. Dig., vol. 93, pp. 385-387, 1993
[1.19].N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characteristics of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, Vol. 41, pp. 1876-1879, 1994.
[1.20]. Kwon-Young Choi and Min-Koo Han, “A novel gate-overlapped LDD poly-Si thin-film transistor,” IEEE Electron Device Lett., Vol. 17, pp. 566-568, 1996.
[1.21]. N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol. 43, No. 11, pp. 1930-1936, 1996.
[1.22]. R. K. Watts and J. T. C. Lee, “Tenth-Micron Polysilicon Thin-film Transistors,” IEEE Electron Device Lett., Vol. 14, pp. 515-517, 1993.
[1.23]. “Polycrystalline silicon for integrated circuits and displays”, second
edition, written by Ted Kamins, pp.200-210.
[2.1] M. Fiebig, U. Stamm, P. Oesterlin, N. Kobayashi, and B. Fechner. “I-J and 300-W excimer laser with exceptional pulse stability for poly-Sicrystallization.” SPIE Proceedings, vol. 4295, p. 38 (2001).
[2.2] C. Prat, D. Zahorski, Y. Helen, T. M. Brahim, and O. Bonnaud. “Excimerlaser annealing system for AMLCDs: a long laser pulse for high performance, uniform and stable TFT.” SPIE Proceedings, vol. 4295, p.33(2001).
[2.3] H. Chern, C. Lee, and T. Lei, “Correlation of polysilicon thin filmtransistor characteristics to defect states via thermal annealing,” IEEE Trans. Electron Devices, vol. 41, p. 460, 1994.
[2.4] N. Lifshitz and S. Luryi, “Enhanced channel mobility in polysiliconthin film transistors,” IEEE Electron Device Lett., vol. 15, p. 274,1994.
[2.5] D. Straub, E. Lueder, T. Kallfass, and K. Schleupen, “An analyticalmodel for polycrystalline thin film transistors,” in Proc. Int. DisplayRes. Con$, 1994, p. 398.
[2.6] T. Li and P. Lin, “On the pseudo-subthreshold characteristics of polycrystallinesilicon thin film transistors with large grain size,” IEEE Electron Device Lett., vol. 14, p. 240, 1993.
[2.7] M. Shnr, M. Hack, and Y. Bvun, “Circuit model and uarameter extraction for polysilicon thin film transistors,” in Proc. 1993 Int.
Semiconductor Dev. Res. Symp., 1993, p. 165.
[2.8] M. Shur, M. Jacunski, and M. Hack, “Device and circuit models for
amorphous silicon and polysilicon thin film transistors used in high
definition display technology,” in Proc. Int. Display Res. Conf, 1994,p45
[2.9] J. Seto, “The electrical properties of polycrystalline silicon films,” J.
Appl. Phys., vol. 46, p. 5247, 1975.
[2.10] T. Katoh and N. Hirashita, “Effects of trap state on field effect mobility of MOSFET’s formed on large grain polysilicon films,” Jpn. J. Appl. Phys., vol. 28, p. L2291, 1989.
[2.11] O.Bonnaud,”Polysiliocn thin film transistors for flat panel display
applications,”Proc.of ESSDERC’98, Editions Frontiers ED.A. Touboul.Y. Danto, J.P. Klien, H.Grunbacher,Inv.paper,42,1998.
[2.12] M.Jacunski, M. Shur, and M. Hack,”Threshold voltage, field-effect mobility, and gate-to-channel capacitance in polysilicon TFTs,” IEEE Trans. Electron Device, 43, 1433(1996).
[2.13] G.-Y. Yang, S,-H. Hur, and C.-H Han, “A Physical-Based Analytical Turn-On Model of Polysilicon Thin-Film Transistors for Circuie Simulation,” IEEE Trans. Electron Devices, 46(1), 165-172 (1999).
[2.14]. J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982
[2.15]. P. Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato,40
“Anomalous off-current mechanisms in n-channel poly-Si thin film
transistors.” Solid-State-Electronics, Vol.38, pp.2075-2079, 1995
[2.16]. M. Hack, I-W. Wu, T. H. King and A. G. Lewis, “Analysis of Leakage Currents in Poly-silicon Thin Film Transistors,” IEDM Tech. Dig., vol. 93, pp. 385-387, 1993
[2.17]. N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki,
“Characteristics of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, Vol.41, pp. 1876-1879, 1994.
[2.18]. Kwon-Young Choi and Min-Koo Han, “A novel gate-overlapped LDD poly-Si thin-film transistor,” IEEE Electron Device Lett., Vol. 17, pp.566-568, 1996.
[2.19]. N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French,“The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices,Vol. 43, No. 11, pp. 1930-1936, 1996.
[2.20]. R. K. Watts and J. T. C. Lee, “Tenth-Micron Polysilicon Thin-film Transistors,” IEEE Electron Device Lett., Vol. 14, pp.515-517, 1993.
[2.21]. “Polycrystalline silicon for integrated circuits and displays”, second
edition, written by Ted Kamins, pp.200-210.
[3.1] G..Fortunato, D.B.Meakin, P.Migiorato and P.G.Le Comber,
”Field-effect analysis for the determination of gap-state density and Fermi-level temperature in polycrystalline silicon”, Philosophical Magazine B, 1988, Vol.57, No.5, 573-586.
[3.2] R. E. Proano, R. S. Misage, D. G. Ast, ”Development and Electrical
Properties of Undoped Polycrystalline Silicon Thin-Film Transistors.”,
IEEE Electron Device Lett. Vol. 36. No. 9. pp. 1915-1922, Sept. 1989.
[3.3]J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este,
[4.1]Takashi Fuyuki,“Thermal degradation of low temperature poly-Si TFT” Thin Solid Films 487 (2005) 216–220.
[4.2] V. Suntharalingam and S.J.Fonash: Appl. Phys. Lett. 68 (1996) 1400.
[4.3] Ching-Wei Lin and Chang-Ho Tseng: Jpn. J. Appl. Phys. Vol.41(2002) pp.5517-5522.
[4.4] Kow Ming Chang, Yuan Hung Chung and Gin Ming Lin: Jpn. J. Appl. Phys. Vol.41(2002) pp.1941-1946.
[4.5] J. S. Choi and G. W. Nedueck, “Frequency-dependent capacitance-voltage characteristics for amorphous silicon-based metal-insulator-semiconductor structures,” IEEE Trans. Electron Devices, Vol. 39, NO.11, pp.2515-2522, Nov.1992.
[4.6] Yoshiaki Toyota, Takeo Shiba, Senior Member, and Makoto Ohkura “Effects of the Timing of AC stress on Device Degradation Produced by Trap States in Low-Temperature Polycrystalline-Silicon TFTs”, IEEE Trans. Electron Devices, Vol. 53, NO.8, pp.1766-1771,AUGUST.2005.
[4.7] J.G..Simmons and G.W.Taylor, ”Nonequilibrium seady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps,” Phys.Rev., vol.4, pp.502-611, Jul.1971
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.5.239
論文開放下載的時間是 校外不公開

Your IP address is 18.191.5.239
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code