Responsive image
博碩士論文 etd-0728107-022718 詳細資訊
Title page for etd-0728107-022718
論文名稱
Title
利用C-V分析複晶矽薄膜電晶體物理特性
Physical Characteristics of Poly-si Thin Film Transistor with C-V measurement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-20
繳交日期
Date of Submission
2007-07-28
關鍵字
Keywords
物理特性、電容-電壓、複晶矽薄膜電晶體
C-V, physical Characteristics, poly-si thin film transistor
統計
Statistics
本論文已被瀏覽 5659 次,被下載 0
The thesis/dissertation has been browsed 5659 times, has been downloaded 0 times.
中文摘要
  由於低溫複晶矽薄膜晶體 (Low-Temperature Poly-Si,LTPS)具有高電子遷移率的優點,因此能夠有效改善顯示器的解析度,進而利用它高遷移率的優點可以在小尺寸的面板上整合控制電路、記憶體等積體電路降低開關電路與外部電路的接點,因此在電路操作時,光電流、熱效應與寄生電容對這些精密電路的影響就更需要被考慮,本篇論文針對最先進的準分子雷射結晶共平面 (coplane) 複晶矽薄膜電晶體元件(poly-si thin film transistor)並且利用寬長比為128um/6um和128um/16um的維度來做的電特性研究,量測得知在正照光的情況下光漏電流與一般非照光來比光漏電在線性區操作與飽和區操作等條件下會有1~4個數量級的差距而且與閘極電壓無直接關係。
  在電容部分的討論著重在改變不同的條件下萃取得閘極-源級間的電容值(Cgs)對電容的物理含意做分析。因為對於“系統整合於面板”(SOP)來說,細微的載子都會產生相當大的影響,因此溫度的效應也必須被考慮。
  此外,研究會發現除了電子遷移率相對於100K的情況,在300K高溫時的遷移率明顯比溫度為100K時大外,高溫時的電流大小也會受到影響。上述的所有分析過程中會儘量利用到文獻作為理論依據和各個模型的概念的參考來源。
Abstract
  Because of the poly-si thin film transistor have the advantage of high mobility, it can improve the analysis for the flat plan display. Using the above advantage can combine the integrated circuit as control IC and memory on the small panel to reduce the number between the switch circuits and the outside contacts. These precise circuits must be considering the photo current、thermal effects and the parasitical capacitance more due to the influence of these precise circuits is more serious than the switch circuits. In my thesis, the research of the electrical characteristics of the newest excimer laser crystallize coplane poly-si thin film transistors ,and using the device length with width is 128um/6um and 128um/16um can be extracted that the environment of the facing illumination have the photo-leakage current than none illumination about four orders, and the photo-leakage current is not consider with any gate voltage.
  With the discussion of the capacitance, the main point of my researches is to change different conditions to extract the gate to source capacitance (Cgs). In addition, the slight carriers may effect the devices with the high mobility system on panel (SOP) technology error, the temperature must be considered.
  We find the mobility is bigger at the environment of the temperature is 300K than the environment of the temperature is 100K when the device work in the linear region and the on current is lower at the environment of the temperature is 300K than the environment of the temperature is 100K when the device work in the saturation region. Using some references and some models as the concepts can analysis some phenomenons I refer to above.
目次 Table of Contents
第一章 引言 1
1.1 歷史 1
1.2 概觀 1
1.3 複晶矽薄膜的缺陷 5
1.4 電容對電壓分析 6
1.5 量測動機與論文架構 8
第二章 結晶技術 11
2.1 前言 11
2.2 準分子雷射結晶 13
2.3 連續橫向結晶 17
第三章 低溫複晶矽薄膜電晶體的電子特性以及元件製程 22
3.1 LTPS元件的變革以及製程的簡介 22
3.2 Seto 模型 25
3.3 複晶矽薄膜電晶體的基礎特性 28
3.3.1 轉換特性 28
3.3.2 輸出特性 30
3.4 元件參數萃取的方法 31
3.4.1 決定臨界電壓 33
3.4.2 決定場效遷移率 34
3.4.3 決定on/off比例 35
3.4.4 決定次臨界搖擺 36
3.4.5 決定陷阱密度 36
3.4.6 決定通道電阻與寄生電阻 37
第四章 實驗結果與討論 39
4.1 複晶矽薄膜電晶體照光機制分析 39
4.2 複晶矽薄膜電晶體電容對電壓分析 47
4.3 複晶矽薄膜電晶體變溫分析 53
第五章 結論 56
參考文獻 57
圖片 71
表格 99
參考文獻 References
[1.01] DISPLAY SEARCH “Low tempture p-si(LTPS) TFTs” 1999
[1.02] M. Furuta, S. Maegawa, H. Sano, T. Yoshioka, Y. Uraoka, H. Tsutsu, I. Kobayashi, T. Kawamura, and Y. Miyata, “A 2.8-in. diagonal low-temperature-purcessed poly-Si TFT with a new LDD structure,” in Proc. Euro Display’96, pp. 547–550,1996.
[1.03] S. Zhang, C. Zhu, J. K. O. Sin, J. N. Li, and P. K. T. Mok, “Ultra-thin elevated channel poly-Si TFT technology for fully-integrated AMLCD system on glass,” IEEE Trans. Electron Devices, vol. 47, no. 5, pp. 569–575, May 2000.
[1.04] Z. Meng, M. Wang, and M. Wong, “High performance low temperature metal-induced unilaterally crystallized polycrystalline silicon thin film transistors for system-on-panel applications,” IEEE Trans. Electron Devices, vol. 47, no. 5, pp. 404–409, May 2000.
[1.05] M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays ,” IEEE Trans. Electron Devices, vol. 48, pp. 845-851, 2001
[1.06] Lee, B. Hirayama, Y. Kubota, Y. Imai, S. Imaya, A. Katayama, M. Kato, K. Ishikawa, A. Ikeda, T. Kurokawa, Y. Ozaki, T. Mutaguch, K. Yamazaki, S. Sharp, Nara, Japan. “A CPU on a glass substrate using CG-silicon TFTs” IEEE Trans. Electron Devices, vol. 1, pp. 164-165, 2003
[1.07] H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., p.38, 1992
[1.08] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313,1995.
[1.09] K. Yoshizaki, H. Takaashi, Y. Kamigaki, T.asui, K. Komori, and H. Katto, ISSCC Digest of Tech., p.166, 1985
[1.10] N. D.Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French , “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol. 43, pp. 1930-1936, 1996.
[1.11] T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, “400 dpi Integrated Contact Type Linear Image Sensors with Poly-Si TFT’s Analog Readout Circuits and Dynamic Shift Registers,” IEEE Trans. Electron Devices, Vol.38, No.5,pp. 1086-1039,1991.
[1.12] Y. Hayashi, H. Hayashi, M. Negishi, T. Matsushita, “ A Thermal Printer Head with CMOS Thin-Film Transistors and Heating Elements Integrated on a Chip,” IEEE Solid-State Circuits Conference (ISSCC), p.266, 1998.
[1.13] N. Yamauchi, Y., Inaba, and M. Okamura, “An Integrated Photodetector-Amplifier using a-Si p-i-n Photodiodes and Poly-Si Thin-Film Transistors,” IEEE Photonic Tech. Lett., Vol. 5,p. 319, 1993.
[1.14] M. G. Clark, “Current Status and Future Prospects of Poly-Si,” IEE Proc. Circuits Devices Syst., Vol. 141, No. 1, p3.3,1994.
[1.15] T. Harada, A .Sato, M. Kinjo, Y. Katayama, S. Sato, and K. Nakajima, “New nonvolatile analog memories for analog data processing, ” Jap. J. Appl. Phys., 39, 2291, 2000
[1.16] K. Banerjee, S. J. Souri, P. Kapur and K. C. Saraswat: Proc. IEEE 89 602 2000.
[1.17] J. B. Boyce and P. Mei, “Laser crystallization for polycrystalline silicon device applications,” in Technology and Applications of Amorphous Silicon, R. A. Street, Ed. New York: Springer-Verlag, pp. 94–146, 2000.
[1.18] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982
[1.19] Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato, “Anomalous off-current mechanisms in n-channel poly-Si thin film transistors.” Solid-State-Electronics, Vol.38, pp.2075-2079, 1995
[1.20] M. Hack, I-W. Wu, T. H. King and A. G. Lewis, “Analysis of Leakage Currents in Poly-silicon Thin Film Transistors,” IEDM Tech. Dig., vol. 93, pp. 385-387, 1993
[1.21] C. A. Dimitriadis, M. Kimura, M. Miyasaka, S. Inoue, F. V. Farmakis, J. Brini, and G. Kamarinos, “Effect of grain boundaries on hot-carrier induced degradation in large grain polysilicon thin-film transistors,” Solid State Electron., vol. 44, pp. 2045–2051, 2000.
[1.22] Shih-Che Huang, Yu-Han Kan, Ya-Hsiang Tai , “Study on degradation of p-type low-temperature polycrystalline silicon thin film transistor with C-V measurement analysis”, 2006
[1.23] S.M. Sze Physics of Semiconductor Device 3nd Edition
[1.24] D.C. Chappel, J.P. Smith, S. Taylor “Hihh frequency CV characteristics of plasma oxidized silicon cardide ,” Electronics Letters vol.33 No.1
[2.01] Base on input from H. Tsutsu, “Recent Process of Low Temperature poly-si Technology ”,EDF 99 Proceedings and Kiyoshi Yondea, “LT poly-Si TFT Technology Roadmap ”,DTAR ‘98 Conference.
[2.02] James Im, Robert Sposili, “Crystalline Si Films for Integrated AMLCDs”, MRS Bulletin, March 1996.
[2.03] DISPLAY SEARCH “Low tempture p-si(LTPS) TFTs” 1999
[2.04] S. Chen et al, Solod State Technology, January 1996 p.118
[2.05] M.A. Crowder et al, “Low Temperature Single-Crystal Si TFTs Fabricated on Si Files Processed via Sequential Lateral Solidification”, IEEE Electron Device Letter, Vol.19, #8, August, 1998.
[2.06] James Im, Robert Sposili, “Crystalline Si File for Integrated AMLCDs”,MRS Bulletin, March 1996
[2.07] J.S. Im et al, Contralled-Super-Leteral Growth of Si Films for Microstructure Manipulation and Optimization”, February 23rd,1998
[2.08] H.S Soh, Semicon Korea Proceedings, 1996, p.86.
[2.09] M. Fiebig, U. Stamm, P. Oesterlin, N. Kobayashi, and B. Fechner. “I-J and 300-W excimer laser with exceptional pulse stability for poly-Si crystallization.” SPIE Proceedings, vol. 4295, p. 38 (2001).
[2.10] C. Prat, D. Zahorski, Y. Helen, T. M. Brahim, and O. Bonnaud. “Excimer laser annealing system for AMLCDs: a long laser pulse for high performance, uniform and stable TFT.” SPIE Proceedings, vol. 4295, p.33(2001).
[2.11] N. Ibaraki: SID ’99 Dig., 1999, p. 172.
[2.12] T. Nishibe: Eurodisplay, 2002, p. 269.
[2.13] S. D. Brotherton, D. J. McCulloch, J. B. Clegg and J. P. Gowers: IEEE Trans. Electron Devices 40 (1993) 407.
[2.14] M. Hatano and T. Sjiba: SID’02 Dig., 2002, p. 158.
[2.15] F. Takeuch, M. Takei, K. Hotta, K. Yoshino, K. Suga, A. Hara and N. Sasaki: AM-LCD’01, 2001, p. 251.
[2.16] K. Yamazaki, T. Kudo, K. Seike, D. Ichishima and C. Jin: AMLCD’ 02, 2002, p. 149.
[2.17] A. Hara, F. Takeuchi, M. Takei, K. Suga, M. Chida, Y. Sano and N. Sasaki:AMLCD’02, 2002, p. 227.
[2.18] R. S. Sposili and J. S. Im:Appl. Phys. Lett. 69 (1996) 2864.
[2.19] J. S. Im and R. S. Sposili:MRS Bulletin 21 (1996) 39.
[2.20] J. S. Im, M. A. Crowder, R. S. Sposili, J. P. Leonard, H. J. Kim, J. H. Yoon, V. V. Gupta, H. J. Song, H. S. Cho: Phys. Status Solidi 166 (1998) 603.
[2.21] J. Y. Park, H. H. Park, K. Y. Lee, H. D. Kim, H. K. Chung: AMLCD03, 2003, p. 149.
[2.22] M. A. Crowder, P. G. Carey, P. M. Smith, R. S. Sposili, H. S. Cho, J.S. Im: IEEE Electron Device Lett. 19 (1998) 306.
[2.23] Y. H. Jung, J. M. Yoon, M. S. Yang, W. K. Park, H. S. Soh: MRS Symp.Proc. 621, 2000, Q9.14.1.
[2.24] S. D. Brotherton, M. A. Crowder, A. B. Limanov, B. Turk and J. S. Im:Asia Display/IDW’01, 2001, p. 387.
[2.25] J. Y. W. Seto: J. Appl. Phys. 46 (1975) 5247.
[2.26] T. I. Kamins: Polycrystalline Silicon for Integrated Circuit Applications (Kluwer Academic, Boston, 1988).
[2.27] H. Takaoka, Y. Sato, T. Suzuki, T. Sasaki, H. Tanabe, H. Hayama: Asia Display/IDW ’01, 2001, p. 395.
[2.28] J. S. Im and H. J. Kim: Appl. Phys. Lett. 64 (1994) 2303.
[2.29] H. J. Kim and J. S. Im: Appl. Phys. Lett. 68 (1996) 1513.
[2.30] J. S. Im and H. J. Kim: Appl. Phys. Lett. 63 (1993) 1969
[2.31] P. S. Peercy, M. O. Thompson and J. Y. Tsao: MRS Symp. Proc. 80, 1987, p. 39.
[2.32] M. O. Thompson, G. J. Calvin, J. W. Mayer, P. S. Peercy, J. M.Poate, D. C. Jacobson, A. G. Cullis and N. G. Chew: Phys. Rev. Lett. 52 (1984) 2360.
[3.01] Base on input from H. Tsutsu, “Recent Process of Low Temperature poly-si Technology ”,EDF 99 Proceedings and Kiyoshi Yondea, “LT poly-Si TFT Technology Roadmap ”,DTAR ‘98 Conference
[3.02] Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thinfilm transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982
[3.03] P. Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato,“Anomalous off-current mechanisms in n-channel poly-Si thin film transistors.” Solid-State-Electronics, Vol.38, pp.2075-2079, 1995
[3.04] M. Hack, I-W. Wu, T. H. King and A. G. Lewis, “Analysis of Leakage Currents in Poly-silicon Thin Film Transistors,” IEDM Tech. Dig., vol. 93, pp. 385-387, 1993
[3.05] N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characteristics of polycrystalline-Si thin film transistors fabricated byexcimer laser annealing method,” IEEE Trans. Electron Devices, Vol. 41, pp. 1876-1879, 1994.
[3.06] Kwon-Young Choi and Min-Koo Han, “A novel gate-overlapped LDD poly-Si thin-film transistor,” IEEE Electron Device Lett., Vol. 17, pp.566-568, 1996.
[3.07] N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French,“The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol. 43, No. 11, pp. 1930-1936, 1996.
[3.08] R. K. Watts and J. T. C. Lee, “Tenth-Micron Polysilicon Thin-film Transistors,” IEEE Electron Device Lett., Vol. 14, pp. 515-517, 1993.
[3.09] “Polycrystalline silicon for integrated circuits and displays”, second edition, written by Ted Kamins, pp.200-210.
[3.10] H. Chern, C. Lee, and T. Lei, “Correlation of polysilicon thin film transistor characteristics to defect states via thermal annealing,” IEEE Trans. Electron Devices, vol. 41, p. 460, 1994.
[3.11] N. Lifshitz and S. Luryi, “Enhanced channel mobility in polysilicon thin film transistors,” IEEE Electron Device Lett., vol. 15, p. 274, 1994.
[3.12] A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia,"Electrical properties of amorphous silicon transistors and MIS-devices: comparative study of top nitride and bottom nitride configurations", J. Electrochem. Soc., vol. 140, pp. 3679-83, 1993.
[3.13] S. C. Deane and M. J. Powell,"Field-effect conductance in amorphous silicon thin-film transistors with a defect pool density of states", J. Appl. Phys., vol. 74, pp. 6655-66, 1993.
[3.14] W. Ling, T. A. Fjeldly, B. Iniguez, H. C. Slade, and M. Shur,"Self-heating and kink effects in a-Si:H thin film transistors", IEEE Trans. Electron Devices, vol. 47, pp. 387-97, 2000.
[3.15] M. Fuse, Y. Sakata, T. Inoue, K. Yamauchi, and Y. Yatsuda,"Kink effect in the double-gate accumulation-mode N-channel polysilicon thin-film transistors", Polycrystalline Semiconductors, Grain Boundaries and Interfaces. Proceedings of the International Symposium. Springer Verlag, Berlin, West Germany, 1989.
[3.16] G. A. Armstrong, S. D. Brotherton, and J. R. Ayres,"A comparison of the kink effect in polysilicon thin film transistors and silicon on insulator transistors", Solid-St. Electron., vol. 39, pp. 1337-46, 1996.
[3.17] I. Policicchio, A. Pecora, R. Carluccio, L. Mariucci, G. Fortunato, F. Plais, and D. Pribat,"Determination of excess current due to impact ionization in polycrystalline silicon thin-film transistors", Solid-St. Electron., vol. 42, pp. 613-18, 1998.
[3.18] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982
[3.19] R. E. Proano, R. S. Misage, D. G. Ast, ”Development and Electrical Properties of Undoped Polycrystalline Silicon Thin-Film Transistors.” , IEEE Electron Device Lett. Vol. 36. No. 9. pp. 1915-1922, Sep
[4.01] National Sun Yat-sen University, The dissertation of Master , 2007, “High-Performance Low-Temperature Polysilicon Thin-Film Transistors with Nano-wire Structure”
[4.02] Kazuhiro KOBAYASHI and Yasunori NIWANO “Photo-Leakage Current of Poly-Si Thin Film Transistors with Offset and Lightly Doped Drain Structure.” Jpn. J. Appl. Phys. Vol. 38 (1999) pp. 5757–5761
[4.03] Yutaka Nanno, Kohji Senda, Shunji Mashimo, Keizaburou Kuramasu, and Hiroshi Tsutsu“Analysis of Photocurrents in Low-Temperature Polysilicon Thin-Film Transistors and the Use of Simulation to Design LDD Devices”Electronics and Communications in Japan, Part 2, Vol. 86, No. 11, 2003
[4.04] 1999IEE Proc.-Circuits Devices Syst., Vol. 141, No. I , February 1994, p27-p34
[4.05] IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 34, NO. 12, DECEMBER 1998 p2321-p2326
[4.06] “Quasi-Static Capacitance–Voltage Characteristics of Polycrystalline Silicon Thin-Film Transistors”, Japanese Journal of Applied Physics Vol. 45, No. 9A, 2006, pp. 6905–6907
[4.07] ELECTRONICS LETTERS 7th May 1992 Vol. 28 No. 10 P967-P969
[4.08] TSIVIDIS, Y. P.: “Operation and modeling of the MOS transistor”(McGraw-Hill, 1987), Chaps. 8-9
[4.09] JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 12 15 JUNE 1998,p8051-p8056
[4.10] IEEE“SEMICONDUCTOR MATERIAL AND DEVICE CHARACTERIZATION” DITER K. SCHRODER ,3nd ,2005 ,p490
[4.11] S.M. Sze Physics of Semiconductor Device 3nd Edition p27
[4.12] IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 45, NO. 10, OCTOBER 1998
[4.13] IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 46, NO. 1, JANUARY 1999 p165-p172
[5.01] S.-C. Huang et al. / Thin Solid Films 515 (2006) 1206–1209
[5.02] Solid-State Electronics Vol. 41, No. 4, pp. 635-641, 1997
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.104.238
論文開放下載的時間是 校外不公開

Your IP address is 18.119.104.238
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code