Responsive image
博碩士論文 etd-0728108-005458 詳細資訊
Title page for etd-0728108-005458
論文名稱
Title
CuInSe2薄膜太陽能電池之背電極及透明導電膜特性之分析與應用
Analysis and application of back electrode and transparent conducting film characteristic of CuInSe2 thin film solar cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-22
繳交日期
Date of Submission
2008-07-28
關鍵字
Keywords
薄膜太陽能電池、鉭
thin film solar cell, Ta
統計
Statistics
本論文已被瀏覽 5633 次,被下載 0
The thesis/dissertation has been browsed 5633 times, has been downloaded 0 times.
中文摘要
研究重點在於製作:導電性與附著力佳之Ta 薄膜、降低Ta/CuInSe2之間歐姆接觸、化學水浴法成長CdS薄膜、低電阻率和高穿透率之AZO薄膜、製作CuInSe2太陽能電池元件。
在RF Sputtering系統中成長Ta薄膜,當操作壓力及基材溫度改變,能促使Ta薄膜由β相(高電阻率)轉變為α相(低電阻率),此為Ta原子自基材中獲得足夠之能量,促使本身能以最穩定之體心立方結構(即α相)沉積,並且成長出低張應力、低片電阻之鉭薄膜,因此雙層結構之Ta、Mo薄膜,其片電阻分別為1.78(Ω/□)、0.98(Ω/□)。
設計改良適當之膜層,Ta薄膜在CuInSe2薄膜下層之特徵接觸電阻(ρc),其值較Ta薄膜在CuInSe2薄膜上層之特徵接觸電阻(ρc)小。
化學水浴法成長CdS薄膜,當PH=10.4,在XRD為2θ=26.7o 有強繞射峰,此可判定為Hexagonal(002)CdS,薄膜會較佳(因為穩定性佳)。
以室溫下濺鍍成長AZO薄膜,最佳片電阻有效地降低至8.19(Ω/□),電阻率降低至7.6×10-4 (Ω-cm)。
成長Al/AZO/ ZnO /CuInSe2 /Ta/SLG 為結構元件,在模擬光源(AM1.5,100mW/cm2)照射下,Voc =0.30V,I sc = 2.75 mA ,FF = 25.8 ﹪。緩衝層以CdS取代ZnO為結構元件下,Voc =0.38 V,I sc = 2.70 mA ,FF = 37.8﹪,則FF (fill factor)有很明顯改善。
Abstract
none
目次 Table of Contents
第一章 前言與研究目的 1
1.1 前言 1
1.2 研究目的 1
1.2.1 Ta薄膜性質 1
1.2.2 傳輸線模型理論 (Transmission Line Model;TLM) 2
1.2.3 AZO薄膜性質 3
1.2.4 CuInSe2太陽能電池元件結構 4
1.3 太陽能電池之歷史背景與研究發展概況 5
第二章 理論基礎與文獻回顧 9
2.1 各層薄膜之特性 9
2.1.1 鈉玻璃基板 9
2.1.2 Ta金屬電極 9
2.1.3 CuInSe2 複晶薄膜性質 11
2.1.4 CdS緩衝層 14
2.1.5 AZO 透光外窗層 15
2.1.6 Al 金屬電極 18
2.2 元件結構設計 19
第三章 實驗原理、步驟與分析儀器 20
3.1 實驗原料 20
3.2 熱蒸鍍之原理與系統 20
3.3 磁控濺鍍之原理與系統 21
3.4 實驗分析儀器 23
3.4.1 α-step 膜厚測量 23
3.4.2 反射光譜儀 23
3.4.3 吸收光譜儀 24
3.4.4 四點探針(four point) 24
3.4.5 熱探針(Hot probe) 25
3.4.6 電流-電壓特性曲線量測(I-V measurement) 26
3.4.7 X-ray繞射儀 26
3.4.8 掃描式電子顯微鏡(SEM) 27
3.4.9 解析型掃描穿透式電子顯微鏡(JEOL TEM-3010 ) 27
3.4.10 Focused Ion Beam (FIB) 雙束型聚焦離子束 27
第四章 實驗設計與步驟 29
4.1 鈉玻璃基板 29
4.2 鉭Ta(鉬Mo)背電極成長 29
4.3 P-type CuInSe2主吸收層薄膜成長 30
4.4 傳輸線模型理論實驗流程 31
4.5 化學水浴沈積法成長硫化鎘(CdS)薄膜 34
4.6 AZO 透光層成長 37
4.6.1 靶材前處理 37
4.6.2 ZnO:Al 薄膜成長步驟 37
4.7 Al金屬電極成長 39
4.8 元件製作流程圖 39
4.8.1 元件轉換效率之基本參數 40
4.8.2 轉換效率量測 41
第五章 實驗結果與討論 42
5.1 Ta(Mo)金屬電極之鍍製 42
5.1.1 加熱基板溫度對薄膜電阻率之影響 42
5.1.2 腔體氬氣壓力對薄膜電阻率之影響 43
5.1.3 XRD結構分析 44
5.1.4 腔體氬氣壓力對薄膜應力之影響 44
5.1.5 濺鍍鉭金屬之雙層結構(Bi-layer structure) 46
5.1.6 STEM橫截面分析 48
5.1.7 改變功率對氮化鉭(TaN)薄膜電阻率之影響 49
5.2 CuInSe2主吸收層之鍍製 50
5.2.1 #1、#2 CuInSe2薄膜之XRD 結構分析 52
5.2.2 #1、#2 CuInSe2薄膜之SEM表面形貌分析 54
5.2.3 導電性量測 55
5.3 傳輸線模型理論 (Transmission Line Model;TLM) 55
5.3.1 CuInSe2與Ta傳輸線量測所得電阻值與距離之關係 55
5.3.2 設計改良適當之膜層 56
5.4 CdS之鍍製 60
5.4.1 導電性量測 60
5.4.2 吸收光譜儀分析 61
5.4.3 XRD 結構分析 62
5.5 AZO透光層之鍍製 64
5.5.1 腔體氬氣壓力對AZO薄膜之影響 64
5.5.2 濺鍍距離對AZO薄膜之影響 66
5.6 元件之製作與轉換效率量測 71
5.6.1 A元件(Al/AZO/ZnO/CuInSe2/Ta/SLG) 71
5.6. 2 B元件(Al/AZO/CdS/CuInSe2/Ta/SLG) 73
5.6. 3 C元件(Al/AZO/CdS/CuInSe2/Mo/SLG) 80
第六章 結論 83
參考文獻 85
參考文獻 References
1. Y.Hamakawa/Solar Energy Materials & Solar cells 74 (2002) 13-23
2.M.D.Archer,R.Hill,Clean Electricity from Photovoltaics, Imperial College Press (2001)
3. R.Corkish, A power that’s clean and bright, Nature. Vol. 16, p.680-681 (2002)
4. D.Talbot , Nanocharging Solar, Technology Review. March / April , p.48-50 (2007)
5.K.Ellmer, et al. D. c. and r. f. (reactive) magnetron sputtering of ZnO:Al films from metallic and ceramic targets : a comparative study.Surface and Coatings Technology. 93, p.21-26 (1997)
6.Dieter K. Schroder, Semiconductor Material and Device Characterization, 2nd ed (Wiley, New York, 1998).
7. J. S. Foresi and T. D. Moustakas, Appl. Phys. Lett. 62, 2859 (1993).
8. D. K. Schroder, Semiconductor Material and Device Characterization, 3rd edition John-Wiley & Sons, Ch3, p.127 (2006)
9. W. N. Shafarman and J. E. Phillips, Direct current-voltage measurement of the Mo/ CuInSe2 contact on operating solar cells, IEEE, 25th PVSC Washington, D.C. p.917-919 (1996)
10. G. Gordillo, et al. Structural and electrical properties of DC sputtered molybdenum films, Solar Energy Materials and Solar Cells, 51, p.327-337 (1998)
11. L. Assmann, et al. Study of the Mo thin films and Mo/CIGS interface properties, Applied Surface Science, 246, p.159-166 (2005)
12. K. Ip, et al. Contacts to ZnO, Journal of crystal growth, 287, p.149-156 (2006)
13. H. J. Hovel, Semiconductors and Semimetals. Vol. 11, R. K. Willardson and A. C. Beer, eds., New York: Academic Press, p.195 (1975)
14. D. M. Chapin, et al. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys. 25,676 (1954)
15. A. Goetzberger, et al. Photovoltaic materials, history, status and outlook . Solar Energy Materials & Solar Cells, R40, p.1-11 (2003)
16. D. Carlson, C. Wronski, Amorphous silicon solar cell. Appl. Phys.Lett, 28, p.671 (1976)
17. D. L. Staebler, C. R. Wronski, Reversible conductivity changes in discharge produced amorphous Si. Appl. Phys. Lett, 31, p.292 (1977)
18. A. Goetzberger, et al. Photovoltaic materials, history, status and outlook . Solar Energy Materials & Solar Cells, R40, p.1-11 (2003)
19. D. Carlson, C. Wronski, Amorphous silicon solar cell. Appl. Phys.Lett, 28, p.671 (1976)
20. D. L. Staebler, C. R. Wronski, Reversible conductivity changes in discharge produced amorphous Si. Appl. Phys. Lett, 31, p.292 (1977)
21 S. M. Sze, Semiconductor Devices: Physics and Technology. 2nd edition, John-Wiley & Sons, ch2, p32 (2001)
22. A. Goetzberger, et al. Solar cells: past, present, future . Solar Energy Materials & Solar Cells, 74, 1-11 (2002)
23. K. Ramanathan, et al. Properties of 19.2% Efficiency ZnO/CdS/ 64 CuInGaSe2 Thin-film Solar Cells. Prog. Photovolt: Res. Appl. 11,225–230 (2003)
24. A. Miguel, et al. Diode Characteristics in State-of-the-Art ZnO/CdS/Cu(In1-xGax)Se2 Solar Cells. Prog. Photovolt: Res. Appl. 13, 209-216(2005)
25. A. Miguel, et al. Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-film Solar Cells. Prog. Photovolt: Res. Appl. 7,311-316 (1999)
26. S. U. Harin, et al. Polycrystalline thin film photovoltaics: Research, Development, and Technologies. IEEE. p. 472-477 (2002)
27. N. G. Dhere, et al. Development of CIGS2 thin film solar cells, Materials Sciences and Engineering B, 116, p.303-309 (2005)
28. N. G. Dhere, Present status and future prospects of CIGSS thin film solar cells, Solar Energy Materials & Solar Cells, 90, p.2181-2190 (2006)
29. J. R. Durrant, et al. Solar cells-A solid compromise. Nature Materials.vol 2. NEWS & VIEWS (2003)
30. N. S. Sariciftci, et al. Science, 258, 1474 (1992)
31. M. S. Green, et al. Solar cell efficiency tables (version 20), Science, 258, 1474 (1992)
32. A. Rockett, et al. Na in selenized Cu(In,Ga)Se2 on Na-containing and Na-free glasses: distribution, grain structure, and deviceperformances, Thin Solid Films. 372, p. 212-217 (2000)
33. U. Rau, H.W. Schock, Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges, Appl. Phys. A. 69, p.131–147(1999)
34. M. Ruckh, et al. Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films, Sol. Cells. 41/42, p335-343 (1996)
35. D. Braunger, et al. Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films, Thin Solid Films. 361-362, p.161-166 (2000)
36. Kazuaki Kondo, Masafumi Nakaishi, Masao Yamada, Masaki Yamabe, and Kenji Sugishima, Microelectronic Engineering, 21, 75, (1993).
37. J. Kim, D. S. Yoon, J. S. Kwak, H. K. Baik and S. M. Lee, Journal of Electronic Materials, 28, 6, (1999).
38. R. Hoogeveen, M. Moske, H. Geisler and K. Samwer, Thin Solid Films, 275, 203, (1996).
39. G. Carlotti, et. al., Mater. Res. Soc. Symp. Proc., 356, 385, (1995) .
40. S. S. Jiang, A. Hu, R. W. Peng and D. Feng, Journal of Magnetism and Magnetic Materials, 126, 82, (1993).
41. L. A. Clevenger et al., Journal of Applied Physics, 72, 4918, (1992).
42. M. H. Read and C. Altman, Applied Physics Letters, 7, 51, (1965)
43.李俊賢,"CuInSe2:Sb薄膜太陽能電池之研製〞,國立中山大學 材料科學研究所碩士論文(2004)
44. M. L. Fearheiley, The phase relations in the Cu, In, Se system and the growth of CuInSe2 single crystals, Sol. Cells. 16, 91 ( 1986).
45. A. Rockett, R. W. Birkmire, CuInSe2 for photovoltaic applications, J. Appl. Phys. 70 (7), 1 October (1991).
46. Shay, J.L. and J.H. Wernick, Ternary chalcopyrite semiconductors: Growth, Electronic properties, and applications. 1975.
47. S. M. Wasim, Transport properties of CuInSe2, Sol. Cells. 16, 289(1986)
48. H. J. Möller, Semiconductors for solar cells. Artech House. ch2,p.15 (1993)
49. H. W. Schock, et al. CIGS-based Solar Cells for the Next Millennium,Prog. Photovolt. Res. Appl. 8, 151-160 (2000)
50. D. Hariskos, et al. Buffer layers in Cu(In,Ga)Se2 solar cells andmodules. Thin Solid Films.480-481, 99-109 (2005)
51 K. Ramanathan, et al. Conference record of the 26th IEEE PVSC, pp.319 (1997)
52. Eisele, W. et al. IEEE, pp. 692-695 (2000)
53.D. Talbot, Nanocharging Solar, Technology Review. March/April, p.48-50 (2007)
54. V. Srikant and D.R.Clarke, J. Appl. Phys.,83 (1998) 5447-5451
55.D. L. Raimondi and E. Kay, J. Vac. Sci. Technol. Vol.7, No.1 (1969) 96
56.G. A. Hirata, J. Mckittrik, T. Cheeks, J. M. Siqueiros, J. A. Diaz, O. Contreras, O. A. Lopez, Thin Solid Films 288, (1996) 29.
57.B. H. Choi and H. B. Im, Thin Solid Films 193/194, (1990) 712.
58. T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 1 125,(1986) L776.
59.G. J. Exarhos, S. K. Sharma, Thin Solid Films 270 (1995) 27-32.212
60. K.Tominaga, M. Kataoka, Thin Solid Films 290/291 (1996) 84.
61. J. Ma, J. Feng, Thin Solid Films 279 (1996) 213. or J.Crystal Growth 294 (2006)427
62.W. J. Jeong, et al. Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell. Thin Solid Films. 506-507, p.180-183 (2006)
63. H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting TransparentThin Films”, published by Institute of Physics Publication, 1995, p.17.
64.J. Ma, F. Ji, D. H. Zhang, H. L. Ma, S. Y. Li, Thin Solid Films 357 (1999)98.
65.Y. Igasaki and H. Saito, Thin Solid Films 199 (1991) 223.
66.李世偉,Ⅰ-Ⅲ-Ⅵ串接式薄膜太陽能電池之研製,國立中山大學材料科學研究所博士研究計畫書 (2005)
67. Y. Ohtake, et al. Polycrystalline Cu(InGa)Se2 Thin-Film Solar Cells with ZnSe Buffer Layers, Jpn. J. Appl. Phys. 34, p.5949-5955 (1995)
68. Y. Ohtake, et al. Characterization of ZnInxSey Thin Films as a BufferLayer for High Efficiency Cu(InGa)Se2 Thin-Film Solar Cells, Jpn. J.65Appl. Phys. 34, p. 3220-3225 (1998)
69.何佳泰,摻Sb之CuInSe2薄膜太陽能電池之研製,國立中山大學 材料科學研究所碩士論文(2007)
70.徐有欽,CuInSe2:Sb複晶薄膜太陽能電池之研究,國立中山大學 材料科學研究所碩士論文(2003)
71. M. A. Herman, H. Sitter, Molecular Beam Epitaxy, 2nd edition Springer, ch2, p.33-80 (1996)67
72. D. Smith, Thin-Film Deposition Principles & Practice, McGraw-Hill,Ch2~Ch3, p.9-62 (1999)
73. Z. Zhu, MBE growth mechanisms of ZnSe:Growth rate and surface coverage, Journal of crystal growth. 96, p.513-518 (1989)
74.Y. Ogawa , A. Jäger-Waldau , T. H. Hua , Y. Hashimoto , K. Ito , Appl. Surface Science. , 92 (1996) 232
75.T. Ohashi , K. Inakoshi , Y. Hashimoto , K. Ito , Solar Energy Materials and solar Cells. , 50 (1998) 37
76.T. Negami , Y. Hashimoto , M. Nishitani , T. Wada , Solar Energy Materials and Solar Cells. , 49 (1997) 343
77. K. Orgassa*, H.W. Schock, J.H. Werner,Thin Solid Films 431 –432 387–391 (2003)
78. H. John, et al. Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films. 260, p.26-31 (1995)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.21.97.61
論文開放下載的時間是 校外不公開

Your IP address is 3.21.97.61
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code