Responsive image
博碩士論文 etd-0728109-110418 詳細資訊
Title page for etd-0728109-110418
論文名稱
Title
奈米壓痕模擬用於分析局部缺陷對薄膜機械性質之影響
The Effect of the Local Defect on Thin Film Mechanical Properties by Employing Nanoindentation Simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-09
繳交日期
Date of Submission
2009-07-28
關鍵字
Keywords
奈米壓痕、分子動力學、彈性模數、硬度、局部缺陷
molecular dynamics, nanoindentation, elastic modulus, hardness, local defect
統計
Statistics
本論文已被瀏覽 5743 次,被下載 13
The thesis/dissertation has been browsed 5743 times, has been downloaded 13 times.
中文摘要
本論文主要以分子動力學模式分析模擬奈米壓痕實驗的壓縮與卸載過程分子間之鏈鍵力與變形之關係,並分析奈米尺度下局部缺陷對壓痕實驗所獲薄膜機械性質之影響。文中利用壓痕負載與位移的關係曲線和最大荷重時的接觸投影面積,分別求得薄膜在壓痕點對應之硬度與彈性模數。Tersoff勢能函數被用來描述碳分子與矽分子間的鏈鍵運動行為,所模擬的物理模型包含壓痕探針(indenter)與被測薄膜兩部份,當基板材料為矽薄膜時,因壓痕探針材料硬度遠超過矽薄膜,故可忽略探針變形效應而將之假設為剛體以減少運算時間;當基板材料為鑽石薄膜時,則因兩者硬度相仿故不能忽略壓痕探針的磨耗與壓縮效應。文中分就下列參數:模型尺寸、壓痕速率、持壓時間、系統溫度、壓痕深度、局部空洞(void)大小、空洞位置及空位(vacancy)缺陷率,分析上述參數對壓痕試驗結果之影響。模擬結果顯示,局部缺陷的存在確實將影響壓痕實驗中負載與位移關係曲線,導致所測得之薄膜的硬度與彈性模數值明顯降低,此結果亦闡示了何以完美晶格結構薄膜模擬所得之彈性模數或硬度值何以遠大於一般大尺寸材料之對應值。
Abstract
The effect of local defect on thin film mechanical properties is studied in this thesis. The molecular dynamics (MD) is employed to simulate and analyze the relation between intermolecular strength and deformation in the nanoindentation test. The variation of hardness and elastic modulus are simulated from the load-displacement response and the projected area of contact at the maximum load. In this study, Tersoff potential function is employed to describe the molecular behavior of nano-scale carbon and silicon films. The MD models of the diamond indenter and film are applied in the simulation. Due to the hardness different, the diamond indenter can be assumed rigid when silicon thin film was test. However, the indenter’s wear and compressive effects can not be ignored when diamond film were studied under nanoindentation simulation. The indentation parameter in the simulation includes substrate size, indentation velocity, peak hold time, system temperature, indentation depth, local void size, void position and vacancy rate. The results show that the hardness and elastic modulus of thin film may decrease significantly with considering the existence of local defect. The results also elucidated that the elastic modulus and hardness for perfect lattice structure thin films should be the upper bond value of the real bulk material.
目次 Table of Contents
目錄 I
圖目錄 IV
表目錄 VII
符號說明 VIII
中文摘要 XII
Abstract XIII
第一章 緒論 1
1-1前言 1
1-2文獻回顧 3
1-3 研究動機與目的 4
1-4 本文架構 5
第二章 基礎理論 6
2-1奈米壓痕量測理論 6
2-2分子動力學理論 12
2-2-1物理模型 12
2-2-2分子間作用力與勢能函數 13
第三章 數值模擬方法 25
3-1 週期邊界條件 25
3-2 運動方程式 26
3-2-1 Gear五階預測修正算法 26
3-2-2 Velocity Verlet方法 28
3-3 溫度修正-Rescaling方法 29
3-4 物理參數與無因次化 30
3-5 截斷半徑法 31
3-5-1 Verlet表列法 32
3-5-2 Cell link表列法 32
3-5-3 Verlet表列結合Cell link表列法 33
3-6 流程圖 34
第四章 模擬結果分析與討論 42
4-1壓痕變形機制與過程 42
4-2模擬系統分析 44
4-2-1模型高度收斂性分析 45
4-2-2模型寬度收斂性分析 45
4-2-3持壓時間效應 46
4-2-4壓痕速率收斂性分析 47
4-2-5壓痕探針壓縮與磨耗 48
4-3壓痕參數分析 49
4-3-1壓痕深度效應 49
4-3-2 溫度效應 50
4-3-3空洞大小效應 50
4-3-4空洞位置效應 51
4-3-5空位缺陷率對壓痕試驗結果的影響 51
第五章 結論與未來方向 81
5-1結論 81
5-2未來研究展望 82
參考文獻 83

參考文獻 References
[1]朱屯,王福明,王習東,2003,奈米材料技術,五南圖書出版,台北。
[2]羅吉宗,戴明鳳,林鴻明,鄭振宗,蘇程裕,2003,奈米科技導論,全華圖書出版,台北。
[3] Fischer-Cripps, A. C., 2002, Nanoindentation, Springer-Verlag, New York.
[4]丁志華,管正平,黃新言,戴寶通, “奈米壓痕量測系統簡介”,奈米通訊第九卷第三期。
[5] Haile, J. M., 1992, Molecular Dynamics Simulation, John Wiley & Sons, New York.
[6] Goodfellow, J. M., 1990, Molecular Dynamics, CRC Press, Boston.
[7] Frenkel, D., and Smit, B., 1996, Understanding Molecular Simulation, Academic Press, San Diego.
[8] Rapaort, D. C., 1997, The Art of Molecular Dynamics Simulation, Cambridge University Press, London.
[9] Irving, J. H., and Kirkwood, J. G., 1950, “The Statistical Mechanical Theory of Transport Properties. IV. The Equations of Hydrodynamics,” Journal of Chemical Physics, Vol. 18, pp. 817-829
[10] Landman, U., Luedtke, W. D., Burnham, N. A., and Colton, R. J., 1990, “Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture,” Science, Vol. 248, pp. 454-461.
[11] Harrison, J. A., White, C. T., Colton, R. J., and Brenner, D. W., 1992, “Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces,” Surface Science, Vol. 271, pp.57-67.
[12] Komvopoulos, K., and Yan, W., 1997, “Molecular Dynamics Simulation of Single and Repeated Indentation,” Journal of Applied Physics, Vol. 82, pp. 4823-4830.
[13] Yan, W., and Komvopoulos, K., 1998, “Three-Dimensional Molecular Dynamics Analysis of Atomic-Scale Indentation,” Journal of Tribology, Vol. 120, pp. 385-392.
[14] Dzegilenko, F. N, Srivastava, D., and Saini, S., 1999, “ Nanoscale Etching and Indentation of a Silicon(001) Surface with Carbon Nanotube,” Nanotechnology, Vol. 10, pp. 253-257.
[15] Cheong, W. C. D., and Zhang, L. C., 2000, “Molecular Dynamics Simulation of Phase Transformations in Silicon Monocrystals due to Nano-indentation,” Nanotechnology, Vol. 11, pp. 173-180.
[16] Gannepalli, A., and Mallapragada1, S. K., 2001, “Molecular Dynamics Studies of Plastic Deformation during Silicon Nanoindentation,” Nanotechnology, Vol. 12, pp. 250-257.
[17] Gannepalli, A., and Mallapragada1, S. K., 2002, “Atomistic Studies of Defect Nucleation during Nanoindentation of Au(001),” Physical Review B, Vol. 66, 104103(9).
[18] Li, J., Vliet, K. J. V., Zhu, T., Yip, S., and Suresh, S., 2002, “Atomistic Mechanisms Governing Elastic Limit and Incipient Plasticity in Crystals,” Nature, Vol. 418, pp. 307-310.
[19] Sanz-Navarro, C. F., Kenny, S. D., and Smith, R., 2004, “Atomistic Simulations of Structural transformations of Silicon Surfaces under Nanoindentation,” Nanotechnology, Vol. 15, pp. 692-697.
[20] Hsieh, J. Y., Ju, S. P., Li, S. H., and Hwang, C. C., 2004, “Temperature dependence in nanoindentation of a metal substrate by a diamondlike tip,” Physical Review B, Vol. 70, 195424(9).
[21] Lin, Y. H., Chen, T. C., Yang, P. F., Jian, S. R., and Lai, Y. S., 2007, “Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline,” Applied Surface Science, Vol. 254, pp. 1415-1422.
[22] William, D. C., Jr., 2000, Fundamentals of Materials Science and Engineering, John Wiley & Sons, New York.
[23]劉政良,2004,分子動力學運用於薄膜機械性質之計量與實驗,國立成功大學,碩士論文。
[24] Li, X., and Bhushan, B., 2002, “A Review of Nanoindentation Continuous Stiffness Measurement Technique and its Applications,” Materials Characterization, Vol. 48, pp. 11-36.
[25] Sneddon, I. N., 1965, “The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile,” International Journal of Engineering Science, Vol. 3, pp. 47-57.
[26] Oliver, W. C., and Pharr, G. M., 1992, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, Vol. 7, No. 6, pp. 1564-1583.
[27] Pharr, G. M., Oliver, W. C., and Brotzen, F. R., 1992, “On the Generality of the Relationship among Contact Stiffness Contact Area, and Elastic Modulus during Indentation,” Journal of Materials Research, Vol. 7, pp. 613-617.
[28] King, R. B., 1987, “Elastic Analysis of Some Punch Problems for a Layered Medium,” International Journal of Solids and Structures, Vol. 23, pp. 1657-1664.
[29] Erkoc, S., 2001, “Annual Reviews of Computational IX,” World Scientific Publishing Company, Singapore, pp. 1-103
[30] Tersoff, J., 1986, “New Empirical Model for the Structural Properties of Silicon,” Physical Review Letters, Vol. 56, No. 6, pp. 632-635.
[31] Tersoff, J., 1988, “New Empirical Approach for the Structure and Energy of Covalent Systems,” Physical Review B, Vol. 37, No. 12, pp. 6991-7000.
[32] Tersoff, J., 1988, “Empirical Interatomic Potential for Silicon with Improved Elastic Properties,” Physical Review B, Vol. 38, No. 14, pp. 9902-9905.
[33] Tersoff, J., 1988, “Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon,” Physical Review Letters, Vol. 61, No. 25, pp. 2879-2882.
[34] Tersoff, J., 1989, “Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems,” Physical Review B, Vol. 39, No. 8, pp. 5566-5568.
[35] Nakamura, M., Fujioka, H., Ono, K., Takeuchi, M., Mitsui, T., and Oshima, M., 2000, “Molecular Dynamics Simulations of III-V Compound Semiconductor Growth with MEB,” Journal of Crystal Growth, Vol. 209, pp. 232-236.
[36] Plimpton, S., 1995, “Computational Limits of Classical Molecular Dynamics Simulations,” Computational Materials Science, Vol. 4, pp. 361-364.
[37] Saha, R., and Nix, W. D., 2001, “Soft Films on Hard Substrates - Nanoindentation of Tungsten Films on Sapphire Substrates,” Material Science and Engineering A, Vol. 319-321, pp. 898-901.
[38] Saha, R., and Nix, W. D., 2002, “Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation,” Acta Materialia, Vol. 50, pp. 23-38.
[39]林彥宏,2004,奈米壓痕之表面層效應與結構變化探討,國立中正大學,碩士論文。
[40]方德華,2005,掃描探針顯微術於多層光學薄膜之奈米壓痕與奈米磨潤研究,國科會專題研究計畫。
[41]朱訓鵬,2002,分子動力學與平行運算於奈米薄膜沉積模擬之應用,國立成功大學,博士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.174.248
論文開放下載的時間是 校外不公開

Your IP address is 18.221.174.248
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code