Responsive image
博碩士論文 etd-0728109-164749 詳細資訊
Title page for etd-0728109-164749
論文名稱
Title
在兩次跳躍的環境運用放大前向的正交分頻多工系統之子載波功率分配研究
Subcarrier Power Allocation for OFDM-Based Dual-Hop Systems with AF Relaying
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-24
繳交日期
Date of Submission
2009-07-28
關鍵字
Keywords
正交分頻多工、兩次跳躍、功率分配、放大前向
amplify-and-forward, dual-hop, power allocation, OFDM
統計
Statistics
本論文已被瀏覽 5687 次,被下載 1897
The thesis/dissertation has been browsed 5687 times, has been downloaded 1897 times.
中文摘要
本篇論文研究如何在兩次跳躍的環境下運用放大前向 (Amplify-and-Forward, AF) 的正交分頻多工 (Orthogonal Frequency Division Multiplexing, OFDM) 系統之中繼 (Relay) 端子載波功率分配研究。在此研究中假設訊號源 (Source) 端每一個子載波上的傳送功率為均勻功率分配 (Uniform Power Allocation)。
考慮系統運用分散式的總功率限制。意思為訊號源與中繼端各自限制其總傳送功率,兩者不相關。傳統的遞迴式充水式演算法 (Iterative Water-Filling Algorithm) 其目的雖可以達到最大的系統容量,然而,此演算法需要很高的運算複雜度;而且在訊號源端使用均勻功率分配下,系統容量的改善會被限制。在中繼端利用子載波功率分配來最大化系統容量實際上並不可行。
為了更提升系統的效能,我們藉由最小化在終點 (Destination) 端等效的雜訊功率,對於中繼端傳送訊號提出一種全新且有封閉解 (Closed-Form Solution) 的子載波功率分配方式。由分析與模擬結果可知與傳統功率分配方式比較,我們提出來的功率分配方式可以改善系統的平均位元錯誤率 (Average Bit Error Rate, ABER)。
Abstract
This thesis studies the subcarrier power allocation for the relayed signal in Orthogonal Frequency-Division Multiplexing (OFDM) based dual-hop system where the relay node operated in amplify-and-forward (AF) scheme. The investigated system assumes that each subcarrier at the source node transmits the signal with uniform power distribution.
Considering the separated sum power constraints which the power constraint at source and relay node are uncorrelated, the conventional iterative water-filling algorithm can maximize the system capacity. However, it requires high computational complexity and the performance improvement is limited when the source node transmits the signal with uniform power distribution, subcarrier power allocation at relay node for capacity maximization is impractical.
To further enhance the system performance, a novel subcarrier power allocation method is derived into a closed-form for the relayed signal to minimize the summation of equivalent noise power of the destination node. Comparing with the existing schemes, simulation results demonstrate that the proposed power scaling scheme significantly improves system average bit error rate (ABER).
目次 Table of Contents
Chapter 1 Introduction………………………..……………………….......…1
1.1 Introduction of Relaying Network and Dual-hop System..……..………...............................................................….1
1.2 Introduction of OFDM………….…................……......…….2
1.3 Literature Review……………...………..………....……….2
1.4 Introduction of Proposed Power Allocation Method.......3
1.5 The Structure of Thesis……...........................................…5
Chapter 2 System Model…….......................................………..6
2.1 OFDM System Architecture………..............……….…..…6
2.2 OFDM-based Dual-hop in AF Relaying System Model.............................................................................................10
Chapter 3 Conventional Power Scaling and Subcarrier Power Allocation Schemes……..........................………….…15
3.1 APS and IPS……………..................................……….…..15
3.2 Optimal Power Allocation for AF OFDM Relaying….....16
Chapter 4 Proposed Power Scaling and Subcarrier Power Allocation Schemes…………………………………………………….….21
4.1. Problem fomulation....................................................................................21
4.2. Average Sum Power Constraint of Relay Node…........22
4.3. Instantaneous Sum Power Constraint of Relay Nod...24
Chapter 5 Simulation Results……………..............…………29
Chapter 6 Conclusions and Future Works…………............40
6.1. Conclusions…………………..………………………………..40
6.2. Future Works……………………...............…………………………….41
Abbreviations………………..………………………………….42
References……………...…………………………………..….45
參考文獻 References
[1] E. C. van der Meulen, “Three-terminal communication channels,” Adv. Appl. Prob., vol. 3, pp.120 - 154, 1971.
[2] T. Cover and A. E. Gamal, “Capacity theorems for the relay channel,” IEEE Trans. Inf. Theory, vol. 25, no. 5, pp. 572 - 584, Sep. 1979.
[3] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity—Part I: System description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927 - 1938, Nov. 2003.
[4] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity. Part II: Implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939 - 1948, Nov. 2003.
[5] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062 - 3080, Dec. 2004.
[6] A. Nosratinia, T. E. Hunter, and A. Hedayat, “Cooperative communication in wireless networks,” IEEE Commun. Mag., vol.42, no.10, pp. 74 - 80, Oct. 2004.
[7] R. U. Nabar, H. Bolcskei, and F. W. Kneubuhler, “Fading relay channels : Performance limits and space-time signal design,” IEEE J. Select. Areas Commun., vol. 22, no. 6, pp. 1099 - 1109, Aug. 2004.
[8] R. Bruno, M. Conti, and E. Gregori, “Mesh networks: Commodity multihop ad hoc networks,” IEEE Commun. Mag., vol. 43, no. 3, pp. 123 - 131, Mar. 2005.
[9] Y. Liang and V. V. Veeravalli, “Gaussian orthogonal relay channels: Optimal resource allocation and capacity,” IEEE Trans. Inf. Theory, vol. 51, no. 9, pp. 3284 - 3289, Sep. 2005.
[10] M. J. Lee, J. Zheng, Y. Ko, and D. M. Shrestha, “Emerging standards for wireless mesh technology,” IEEE Trans. Wireless Commun., vol. 13, no. 2, pp. 56 - 63, Apr. 2006.
[11] Harmonized Contribution 802.16j (Mobile Multihop Relay) Usage Models. http://grouper.ieee.org/groups/802/16/relay/docs/80216j-06-015.pdf.
[12] R. B. Marks, J. M. Costa, and B. G. Kiernan, “The evolution of WirelessMAN,” IEEE Microwave Mag., vol. 9, no. 4, pp. 72 - 79, Aug. 2008.
[13] R. M. Gagliardi, Introduction to Communications Engineering. New York: Wiley, 1988.
[14] P. Lusina, R. Schober and L. Lampe, “Diversity-multiplexing trade-off of the hybrid non-orthogonal amplify-decode and forward protocol,” in Proc. IEEE ISIT, Toronto, Ontario, Canada, Jul. 2008, pp. 2375 - 2379.
[15] B. Can, H. Yomo, and E. De Carvalho, “Hybrid forwarding scheme for cooperative relaying in OFDM based networks,” in Proc. ICC’06, Istanbul, Turkey, Jun. 2006, vol. 10, pp. 4520 - 4525.
[16] Leonard. J. Cimini, Jr., “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun., vol. 33, no.7, pp. 665 - 675, Jul. 1985.
[17] I. Kalet, “The multitone channel,” IEEE Trans. Commun., vol. 37, no. 2, pp. 119 - 124, Feb. 1989.
[18] V. Mignone and A. Morello, “CD3-OFDM: A novel demodulation scheme for fixed and mobile receivers,” IEEE Trans. Commun., vol. 44, no. 9, pp. 1144 - 1151, Sep. 1996.
[19] G. Faria et al., “DVB-H: Digital broadcast services to handheld devices,” Proc. IEEE, vol. 94, no. 1, pp. 194 - 209, Jan. 2006.
[20] IEEE Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High Speed Physical Layer in the 5GHz Band, IEEE Std 802.11a-1999, Sep. 1999.
[21] IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE std 802.16-2004, Oct. 2004.
[22] Physical Channels and Modulation (Release 8), 3GPP TS 36.211 V8.3.0, May 2008. [Online]. Available: http://www.3gpp.org/
[23] Y.-W. Hong, W.-J. Huang, F.-H. Chiu, and C.-C. J. Kuo, “Cooperative communications in resource-constrained wireless networks,” IEEE Signal Processing Mag., vol. 24, no. 3, pp. 47 - 57, May 2007.
[24] J. Zhang, Q. Zhang, C. Shao, Y. Wang, P. Zhang, and Z. Zhang, “Adaptive optimal transmit power allocation for two-hop non-regenerative wireless relay system,” in Proc. IEEE VTC-2004 spring, Milan, Italy, May 2004, vol. 2, pp. 1213 - 1217.
[25] I. Maric and R. D. Yates, “Forwarding strategies for Gaussian parallel-relay networks,” in Proc. IEEE ISIT, Chicago, IL, Jul. 2004, pp. 270.
[26] Y. Li, B. Vucetic, Z. Zhou, and M. Dohler, “Distributed adaptive power allocation for wireless relay networks,” IEEE Trans. Wireless Commun., vol. 6, no. 3, pp. 948 - 958, Mar. 2007.
[27] M. O. Hasna and M.-S. Alouini, “Optimal power allocation for relayed transmissions over Rayleigh fading channels,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 1999 - 2004, Nov. 2004.
[28] Y. Zhao, R. Adve, and T. J. Lim, “Improving amplify-and-forward relay networks: Optimal power allocation versus selection,” IEEE Trans. Wireless Commun., vol. 6, no.8, pp. 3114 - 3123, Aug. 2007.
[29] J. Boyer, D. D. Falconer, and H. Yanikomeroglu, “Multihop diversity in wireless relaying channels,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1820 - 1830, Oct. 2004.
[30] M. Chen, S. Serbetli, and A. Yener, “Distributed power allocation strategies for parallel relay networks,” IEEE Trans. Wireless Commun., vol. 7, no.2, pp. 948 - 958, Feb. 2008.
[31] B. Can, M. Portalski, H. Lebreton, S. Frattasi, and H. Suraweera, “Implementation issues for OFDM-based multihop cellular networks,” IEEE Commun. Mag., vol. 45, no. 9, pp. 74 - 81, Sep. 2007.
[32] G.-D. Yu, Z.-Y. Zhang, Y. Chen, S. Chen, and P.-L. Qiu, “Power allocation for non-regenerative OFDM relaying channels,” in Proc. IEEE WCNC’05, New Orleans, LA, Sep. 2005, vol. 1, pp. 185 - 188.
[33] I. Hammerstrom and A. Wittneben, “On the optimal power allocation for nonregenerative OFDM relay links,” in Proc. IEEE ICC’06, Istanbul, Turkey, Jun. 2006, vol.10, pp. 4463 - 4468.
[34] Yong Li, Wenbo Wang, Jia Kong, Wei Hong, Xing Zhang, and Mugen Peng, “Power allocation and subcarrier pairing in OFDM-based relaying networks,” in Proc. IEEE ICC’08, Beijing, China, May 2008, pp. 2602 - 2606.
[35] D. Chen and J. N. Laneman, “Joint power and bandwidth allocation in multihop wireless networks,” in Proc. IEEE WCNC’08, Las Vegas, LA, Apr. 2008, pp. 990 - 995.
[36] M. O. Hasna and M.-S. Alouini, “A performance study of dual-hop transmissions with fixed gain relays,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 1963 - 1968, Nov. 2004.
[37] H. Mheidat and M. Uysal, “Impact of receive diversity on the performance of amplify-and-forward relaying under APS and IPS power constraints,” IEEE Commun. Lett., vol. 10 , no. 6, pp. 468 - 470, Jun. 2006.
[38] H. A. Suraweera and J. Armstrong, “Performance of OFDM-based dual-hop amplify-and-forward relaying,” IEEE Commun. Lett., vol. 11, no. 9, pp. 726 - 728, Sep. 2007.
[39] A. Blestas, A. Khisti, D. Reed, and A. Lippman, “A simple cooperative diversity method based on network path selection,” IEEE J. Select. Areas Commun., vol. 24, no. 3, pp. 659 - 672, Mar. 2006.
[40] Bo Gui, Lin Dai, and Leonard J. Cimini, Jr, “Selective relaying in cooperative OFDM systems: Two-hop random network,” in Proc. WCNC’08, Las Vegas, Apr. 2008, pp. 996 - 1001.
[41] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Boston: Artech House, 2000.
[42] H. Muhaidat, M. Uysal, and N. Al-Dhahir, “Equalization techniques for distributed space-time block codes with amplify-and-forward relaying,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 1839 - 1852, May 2007.
[43] Simon Haykin, Communication Systems, 4th ed., John Wiley & Sons Inc., 2001.
[44] J. G. Proakis, Digital Communications, 4th ed., New York: McGraw-Hill, 2001.
[45] Y. Fan and J. Thompson, “MIMO configurations for relay channels: theory and practice,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1774 - 1786, May 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code