Responsive image
博碩士論文 etd-0728110-101145 詳細資訊
Title page for etd-0728110-101145
論文名稱
Title
樟腦磺酸錯合對雙苯喹啉有機分子及高分子發光增益
Complexation of camphor sulfonic acid to affect the emission behavior of organic compound and polymer with quinoline moiety
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-14
繳交日期
Date of Submission
2010-07-28
關鍵字
Keywords
微胞、聚集誘導螢光
micelle, aggregation induced emissiom
統計
Statistics
本論文已被瀏覽 5718 次,被下載 19
The thesis/dissertation has been browsed 5718 times, has been downloaded 19 times.
中文摘要
螢光有機小分子及高分子在高濃度溶液態或固態時,會因為發色團靠近導致 π-π作用力而降低螢光量子效率,因此,發展出具有聚集時螢光強度增強之小分子或高
分子有其實用上之價值。本實驗室合成出具有旋轉自由度的雜環喹啉有機小分子(2,4-Diphenylquinoline, DPQ) 和 具 雜 環 喹 啉 側 基 之 螢 光 高 分 (poly(vinyl
diphenylquinoline), PVQ),以探討其聚集誘導螢光增強效應 (aggregation induce emission, AIE)。為了論證文獻上所述抑制分子轉動(restriction of intramolecular
rotation, RIR)是導致 AIE 的觀點,我們進一步在 DPQ 及 PVQ 內摻雜具有巨大基團的樟腦磺酸(camphor sulfonic acid, CSA),經由質子轉移作用使樟腦磺酸經由離子鍵鍵結於 DPQ 及 PVQ 的氮原子上,所得之 DPQ-CSA 及 PVQ-CSA 複合物具有較 DPQ
及 PVQ 更強之 AIE 現象,此結果可間接證實 RIR 為形成 AIE 現象的機構。延續研究 嵌 段 高 分 子 在 微 胞 方 面 之 AIE 應 用 , 所 選 用 的 嵌 段 高 分 子 是poly(styrene-block-tertbutylstyrene) (PS-b-PBS),經過合成方法合成出 PVQ-b-PBS,再混摻 CSA 而得到 PVQ-b-PBS-CSA,透過不同溶液的選擇,可以形成不同形貌的微胞,進而探討不同形貌的微胞對發光之影響,最後用原子力顯微鏡和穿透式電子顯微鏡來分析微胞的組成和外貌。
Abstract
Many chromophoric organics and polymers are highly emissive in their dilute
solutions but become weakly luminescent in the high concentration and solid film states
due to the induced π−π interactions of the intimately-contact chromophores. Therefore, it
is practically important to develop fluorescent organic and polymeric materials with
enhanced emission in their aggregated states (so called aggregated-induced emission,
AIE). In this study, organic compound 2,4-diphenylquinoline (DPQ) with inherent
quinoline ring and polymeric poly(vinyl diphenylquinoline) (PVQ) with pendant
quinoline group were prepared and their AIE-phenomena were characterized. To prove the
reported point that restriction of intramolecular rotation (RIR) is the main cause for AIE
effect, DPQ and PVQ were further incorporated with organic strong acid of
camphorsulfonic acid (CSA). Through the favorable acid-base interaction between the
sulfonic acid in CSA and the nitrogen atom of the quinoline ring in DPA (or CSA), ionic
complex of DPQ-CSA (and PVQ-CSA) was easily prepared and their response toward
AIE properties were studied. Through the enhanced RIR by the complexation of bulky
CSA with the central quinoline ring, the resulting DPQ-CSA (and PVQ-CSA) complex
was proved to have better AIE-effect compared to the pristine DPQ (and PVQ). RIR
mechanism can be indirectly proved in this case.
We study the AIE on micelle topics of the block copolymer. We choose the
poly(styrene-block-tertbutylstyrene) (PS-b-PBS) as our block copolymer. To synthesize
the PS-b-PBS, we can successfully get the new block copolymer PVQ-b-PBS.
PVQ-b-PBS was similarly blended with the CSA. In the block copolymer micelles, choose
the selective solvent to get the different micelles and observe the diverse on the
luminescence. Finally, we analyzed compositions and conformations by atomic force
microscopy (AFM) and transmission electron microscopy (TEM).
目次 Table of Contents
Outline of Contents
Outline of Contents I
List of Tables IV
List of Schemes V
List of Figures VI
Abstract (in Chinese) X
Abstract (in English XI

Chapter 1 Introduction of the aggregation-caused quenching and
aggregation-induced emission 1
1.1 Fluorescence and phosphorescence 1
1.2 Aggregate and excimer 2
1.3 Aggregates of organic molecules 4
1.4 Aggregation-induced emission phenomenon 5
1.4.1 Small-molecules siloes compounds 6
1.4.1.1 Viscochromism 12
1.4.1.2 Thermochromism 13
1.4.1.3 Piezochroism 15
1.4.1.4 Fluorescent decay dynamics 16
1.5 Applications of HPS 18
1.5.1 Chemical sensors 18
1.5.2 Detection of critical micelle concentration 20
1.6 New AIE systems 21
1.6.1 AIE-active silole-containing polymers 23
1.7 Motivation 25
1.8 References 28

Chapter 2 Studies on AIE properties of model compound DPQ, PVQ, DPQ-CSA
and PVQ-CSA 31
2.1 Abstract 31
2.2 Introduction 32
2.3 Experimental 33
2.3.1 Materials 33
2.3.2 Instrumentations 35
2.4 Results and discussion 36
2.4.1 Primary spectral characterizations of different solution mixtures37
2.4.2 Molecular rotation from the cooling experiment 47
2.4.3 Lifetime measurements from the time-resolved fluorescence spectra 48
2.4.4 Comparison of molecular rotations of model DPQ and DPQ-CSA 51
2.5 Conclusions 54
2.6 References 55

Chapter 3 AIE effects of block copolymer of PVQ-PBS and its CSA-complexed PVQ(CSA)-PBS 58
3.1 Abstract 58
3.2 Introduction 59
3.3 Experimental 61
3.3.1 Materials 61
3.3.2 Instrumentations 61
3.3.3 Synthesis of poly((styrene)-block-tertbutylstyrene)62
3.3.4 Synthesis of poly((4-acetylstyrene)-block-4-tert-butylstyrene 62
3.3.5 Synthesis of poly((vinyl-diphenylquinoline)-block-4-tert-butylstyrene 63
3.4 Result and discussion 63
3.4.1 Synthesis and Characterization of block copolymers 63
3.4.2 AIE effect of PVQ-PBS and PVQ(CSA)-PBS 68
3.4.3 Morphology of block copolymer PVQ-PBS and PVQ(CSA)-PBS 73
3.4.4 Topography of PVQ(CSA)-PBS by TM-AFM 78
3.5 Conclusions 80
3.6 References 81

Chapter 4 Conclusions 83

List of Table
Table 1-1 Fluorescence decay parameters of HPS solutions 17
Table 2-1 The appearance and the UV-vis absorption maxima of all samples in solvent/non-solvent mixtures 40
Table 2-2 PL quantum efficiency (ΦPL) measured from the solution mixtures and the solid samples41
Table 2-3 Data calculated from the fluorescent decay curves 51
Table 3-1 GPC test of block copolymer PS-b-PBS, PAS-b-PBS, and PVQ-b-PBS 67
Table 3-2 PL quantum efficiency (ΦPL) measured from the solution mixtures and the solid samples of PVQ-b-PBS and PVQ(CSA)-b-PBS 72

List of Schemes
Scheme 1-1 Chemical structure of HPS and its synthetic route 8
Scheme 1-2 Schematic illustration of AIE mechanism 12
Scheme 1-3 Illustration of CMC detection in aqueous surfactant solution containing AIE-active amphiphile and structures of A 2 HPS and H2A2HPS2 21
Scheme 1-4 Synthesis of hyperbranched poly(2,5-silolylphenylene)s by homopolycyclotrimerization of diyne monomer 25
Scheme 3-1 Fabrication of the PVQ-b-PBS/CSA micelle 64

List of Figures
Figure 1-1 The Jablonski diagram illustrates the general process involved during light
absorption and emission of organic molecules 2
Figure 1-2 a) Excimer formation with the corresponding monomer and excimer emission
; and b) schematic diagrams for aggregate formation between fluorophore segments of inter- chain and intra-chain 4
Figure 1-3 Schematic representations of the H- and J- aggregates 5
Figure 1-4 Schematic illustration of ACQ and AIE 7
Figure 1-5 HPS in the acetonitrile/water mixtures containing different volume fractions
of water; photographs taken under UV illumination 9
Figure 1-6 a) PL spectra of HPS in acetonitrile/water mixtures with different water fractions. b) Quantum yield (Φ F ) of HPS versus solvent composition of
acetonitrile/water mixture 10
Figure 1-7 a) Absorption spectra of HPS in acetonitrile/water mixtures with different
water fractions b),c) Size distributions of the nanoparticles of HPS 10
Figure 1-8 PL peak intensity of HPS versus composition of glycerol/methanol mixtures
; [HPS] = 10 -5 M 13
Figure 1-9 a) PL spectra of HPS in THF at different temperatures; [HPS] = 10 -5 M.
b) NMR peaks of phenyl protons of HPS in dichloromethane-d2 at different
temperatures 14
Figure 1-10 Switching the emission of HPS by a heating–cooling cycle. Photographs
taken under UV illumination at a) room temperature (original solid powder) b) ~200 o C (melt liquid), and c) room temperature 14
Figure 1-11 Effect of externally applied pressure on the PL intensity of HPS films 16
Figure 1-12 Time-resolved fluorescence of HPS in DMF/water mixtures 17
Figure 1-13 Photos of the HPS spots on the TLC plates placed in the Petri dishes in
the a) absence and b) presence of organic vapors. Photos in column c) were
taken after the solvent had evaporated. All the photos were taken under UV
illumination 19
Figure 1-14 Effects of acetone vapor on the PL spectra of the films of a) MPPS and b)
HPS on quartz cell c) structure of MPPS 19
Figure 1-15 AIE-active of small phenylenes compounds 22
Figure 1-16 Chemical structures of pyran derivative and photographs of the
nanoaggregates suspended in the THF/water mixtures with water contents
40, 90, and 99%, which emit green, yellow, and red lights, respectively,
under illumination of a handheld UV lamp 23
Figure 1-17 Substituted polyacetylenes bearing silole pendant group 24
Figure 1-18 Photograph of polysilole in THF (10 mg/L, left) and polysilole nanoaggregates in water-THF mixture (90 : 10 by volume, 10 mg/L, right) under black light 24
Figure 1-19 The molecular structures of model compound (DPQ), polymer (PVQ) and block copolymer (PVQ-b-PBS) 27
Figure 2-1 1 H NMR spectra of DPQ in CDCl3 34
Figure 2-2 1 H NMR spectra of poly(4-acetylstyrene) (PAS) in CDCl 3 and of PVQ in
CD2Cl2 35
Figure 2-3 Chemical structures of DPQ, PVQ, DPQ-CSA and PVQ-CSA 36
Figure 2-4 Solution (10 -4 M) UV absorption spectra of DPQ in the solvent mixtures of
THF/water with various compositions 42
Figure 2-5 Solution (10 -4 M) UV absorption spectra of PVQ in the solvent mixtures of
THF/water with various compositions 42
Figure 2-6 Solution (10 -4 M) UV absorption spectra of DPQ-CSA in the solvent mixtures of THF/hexane with various compositions 43
Figure 2-7 Solution (10 -4 M) UV absorption spectra of PVQ-CSA in the solvent mixtures of THF/hexane with various compositions 43
Figure 2-8 Dilute-solution (10 -4 M) emission spectra of a) DPQ and b) PVQ in the
solvent mixtures of THF/hexane with various compositions 44
Figure 2-9 Dilute-solution (10 -4 M) emission spectra of a) DPQ-CSA and b) PVQ-CSA 45
Figure 2-10 Changes in the PL peak intensities of DPQ/PVQ and DPQ-CSA/PVQ-CSA
with different poor solvent in poor solvent/good solvent mixtures 46
Figure 2-11 Integrated emission intensity from the solutions (10 -3 M) of DPQ, PVQ,DPQ-CSA and PVQ-CSA in chloroform at various temperatures 48
Figure 2-12 Fluorescence decay cures of the solid samples of DPQ. PVQ, DPQ-CSA ,PVQ-CSA 50
Figure 2-13 Simulated molecular structures of DPQ (right) and DPQ-CSA with minimum energy 53
Figure 2-14 The rotational energy barrier as the function of the rotational angle of the
C2-phenyl rings in the model DPQ and DPQ-CSA 53
Figure 3-1 Representation of different copolymer architectures 59
Figure 3-2 Schematic representation of aggregation structures formed by block copolymers in solution 59
Figure 3-3 1 H NMR spectra of PS-b-PBS, PAS-b-PBS and PVQ-b-PBS in CDCl 3 65
Figure 3-4 FT-IR spectra of PS-b-PBS, PAS-b-PBS and PVQ-b-PBS in KBr 65
Figure 3-5 DSC scans of PS-b-PBS, PAS-b-PBS and PVQ-b-PBS 66
Figure 3-6 TGA scans of PS-b-PBS, PAS-b-PBS and PVQ-b-PBS 76
Figure 3-7 The UV-vis absorption spectra of a) PVQ-b-PBS and b) PVQ-b-PBS-CSA solution (10 -4 M) with mixed solvents 70
Figure 3-8 The PL emission spectra of a) PVQ-b-PBS and b) PVQ(CSA)-b-PBS solution (10 -4 M) with mixed solvents71
Figure 3-9 PVQ-b-PBS-CSA solutions in THF-hexane mixtures containing different volume fractions of Hexane; photographs taken under illumination of a
UV lamp 71
Figure 3-10 Changes in the PL peak intensities of PVQ-PBS and PVQ(CSA)-PBS with different water fractions in the hexane/THF mixtures72
Figure 3-11 TEM images of the morphologies of the polymeric micelles prepared
from 10 -5 M PVQ-b-PBS copolymers in THF/hexane (10:90 v%) a) cluster b) micelles75
Figure 3-12 TEM images of the morphologies of the polymeric micelles prepared from 10 -5 M PVQ-b-PBS-CSA copolymers in THF/hexane (10:90 v%)
Cryo-TEM b) HF-2000 TEM 75
Figure 3-13 The size distribution of a)PVQ-b-PBS and b)PVQ(CSA)-b-PBS (concentration: 10 -5 M ,THF: hexane=10:90v%) 76
Figure 3-14 The phase lag varies in response to the mechanical properties of the sample surface 78
Figure 3-15 TM-AFM images a) topography image b) phase image 79
參考文獻 References
Chapter 1
[1] M. Gratzel, J.K. Thomas, in: Modern Fluorescence Spectroscopy, Vol. 2 E.L.
[2] Wehry, Ed, Plenum Press, New York, N.Y., 1976, p. 169.
[3] Bernard Valeur, in:Molecular Fluorescence: Principles and Applications,
Wiley-VCH, Weinheim New York, 2002.
[4] A. Eisfeld, J.S. Briggs Chemical Physics. 2006, 324, 376.
[5] J. Luo, Z. Xie, Jacky W.Y. Lam, L. Cheng, H. Chen, C. Qiu, H.S. Kwok, X. Zhan,
Y. Liu, D. Zhuc and B.Z. Tang Chem. Commun. 2001, 1740.
[6] K.E. Sapsford, L. Berti, I.L. Medintz Angew. Chem. Int. Ed. 2006, 45, 4562.
[7] M. Grell, D.D.C. Bradley, G. Ungar, J. Hill, K.S. Whitehead Macromolecules
1999, 32, 5810.
[8] E.H. Braye, W. Hübel, I. Caplier J. Am. Chem. Soc. 1961, 83, 4406.
[9] B. Wrackmeyer Coord. Chem. Rev. 1995, 145, 125.
[10] K. Tamao, M. Uchida, T. Izumizawa, K. Furukawa, S. Yamaguchi J. Am. Chem.
Soc. 1996, 118, 11974.
[11] H. Murata, G.G. Malliaras, M. Uchida, Y. Shen, Z.H. Kafafi Chem. Phys. Lett.
2001, 339, 161.
[12] J. Chen, C.C.W. Law, J.W.Y. Lam, Y. Dong, S.M.F. Lo, I.D.Williams, D. Zhu,
B.Z. Tang Chem. Mater. 2003, 15, 1535.
[13] B.Z. Tang, X. Zhan, G. Yu, P.P.S. Lee, Y. Liu, D. Zhu J. Mater. Chem. 2001, 11, 2974.
[14] X. Fan, J.L. Sun, F.Z. Wang, Z.Z. Chu, P. Wang, Y.Q. Dong, R.R. Hu, B.Z. Tang,
D.C. Zou Chem. Commun. 2008, 2989. 29
[15]S. Li, Q. Wang, Y. Qian, S. Wang, Y. Li and G. Yang J. Phys. Chem. A, 2007, 111,
11793.
[16] Y. Ren, J.W.Y. Lam, Y.Q. Dong, B.Z. Tang, K.S. Wong J. Phys. Chem. B, 2005,
109, 1135.
[17] Y. Dong, J.W.Y. Lam, A. Qin, J. Liu, Z. Li, B. Z. Tang, J. Sun, H.S. Kwok Appl. Phys. Lett. 2007, 91, 011111.
[18] Y. Dong, J.W.Y. Lam, A. Qin, Z. Li, J. Sun, H.H.Y. Sung, I.D. Williams, B.Z.
Tang Chem. Commun. 2007, 40.
[19] Y.Q. Dong, J.W.Y. Lam, Z. Li, A. Qin, H. Tong, Y.P. Dong, X.D. Feng, B.Z. Tang
J. Inorg. Organomet. Polym. Mater. 2005, 15, 287.
[20] Y.Q. Dong, J.W.Y. Lam, A. Qin, Z. Li, J.Z. Sun, Y.P. Dong, B.Z. Tang J. Inorg.
Organomet. Polym. Mater. 2007, 17, 673.
[21] G. Riess Prog. Polym. Sci. 2003, 28, 1107.
[22] A. Khanal, Y. Inoue, M. Yada, K. Nakashima J. Am. Chem. Soc. 2007, 129, 1534.
[23] N. Nishiyama, K. Kataoka Adv. Polym. Sci. 2006, 193, 67.
[24] Q. Zeng, Z. Li, Y. Dong, C. Di, A. Qin, Y. Hong, L. Ji, Z. Zhu, C.K.W. Jim, G. Yu, Q. Li, Z. Li, Y. Liu, J. Qin, B. Z. Tang Chem. Commun. 2007, 70.
[25] H. Tong, Y. Hong, Y. Dong, M. Haeussler, Z. Li, J.W.Y. Lam, Y. Dong,
[26] H.H.Y. Sung, I.D. Williams, B. Z. Tang J. Phys. Chem. B, 2007, 111, 11817.
[27] J. Chen, Z. Xie, J.W.Y. Lam, C.C.W. Law, B.Z. Tang Macromolecules 2003, 36, 1108.
[28] M. Haeussler, A.J. Qin, B.Z. Tang Polymer 2007, 48, 6181.
[29[ A. Desjardins, A. Eisenberg, Macromolecules 1991, 24, 5779. 30. R.H. Friend, R.W. Gymer, A.B. Holms, J.H. Burroughes, R.N. Marks, C. Taliani,
D.D.C. Bradley, D.A. Dos Santos, J.L. Brédas, M. Lögdlund, W.R. Salaneck Nature 1999, 397, 121.
[31] M.A. El. Saged, Kasha, M. Spectrochim. Acta 1960, 15, 758.
[32] N. Mataga, S. Tsuno Chem. Soc. Jpn. 1957, 30, 368.
[33] E.D. Thorseh, F.R. Stermitz, C.M. O'Donnell Photochem. Photobiol. 1974, 19, 291.
[34]W. Y. Huang, H. Yun, H. S. Lin, T. K. Kwei, Y. Okamoto Macromolecules 1999, 32, 8089.

Chapter2
[1] J.Z. Xie, J.W.Y. Lam, L. Cheng, H. Chen, C. Qiu, H.S. Kwok, X. Zhan, Y. Liu,
D. Zhu, B.Z. Tang, Chem. Commun. 2001, 1740.
[2] B.Z. Tang, X. Zhan, G. Yu, P.P.S. Lee, Y. Liu, D. Zhu, J. Mater. Chem. 2001, 2974.
[3] Y. Hong, J.W.Y. Lam, B.Z. Tang, Chem. Commun. 2009, 4332.
[4] Z. Li, Y.Q. Dong, B.X. Mi, J. Phys. Chem. B 2005, 109, 10061.
[5] B.K. An, D.S. Lee, S.Y. Park, J. Am. Chem. Soc.2004, 126, 10232.
[6] X. Tong, Y. Zhao, B.K. An, S.Y. Park, Adv. Funct. Mater. 2006, 16, 1799.
[7] H. Tong, Y. Hong, Y. Dong, Y. Ren, M. Häussler, J.W.Y. Lam, K.S. Wong, B.Z.
Tang, J. Phys. Chem. B.2007, 111, 2000.
[8] J. Chen, B. Xu, Y. Cao, Synth. Met.2005,152, 2149.
[9] Y. Ren, Y. Dong, J.W.Y. Lam, B.Z. Tang, K.S. Wong, Chem. Phys. Lett. 2005, 42,
468.
[10] Y. Ren, J.W.Y. Lam, Y. Dong, B.Z. Tang, K.S. Wang, J. Phys. Chem. B. 2005, 109, 1135.
[11] K. Kokado, Y. Chujo, Macromoleuces 2009, 42, 1418.
[12] A. Qin, C.K.W. Jim, Y. Tang, J.W.Y. Lam, J. Liu, F. Mahtab, P. Gao, B.Z. Tang, J.
Phys. Chem. B.2008, 112, 9281.
[13] A. Pucci, R. Rausa, F. Ciardelli, Macromol. Chem. Phys. 2008, 209, 900.
[14] Y. Li, G. Vamvounis, S. Holdcroft, Macromolecules 2002, 35, 6900.
[15] J. Liu, J.W.Y. Lam, B.Z. Tang, J. Inorg. Orangomet. Polym. 2009, 19, 249.
[16] C.T. Lai, J.L. Hong, J. Phys. Chem. C 2009, 113, 18578.
[17] M.R. Majidi, L.A.P. Kane-Maguire, G.G Wallace, Polymer 1994, 35, 3113.
[18] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Adv. Mater.
2000, 12, 481.
[19] A.P. Monkman, M. Halim, I.D.W. Samuel, L.E. Horburgh, J. Chem. Phys.1998,
109, 10372.
[20] J.M. Hancock, S.A. Jenekhe, Macromolecules 2008, 41, 6864.
[21] J.L. Kim, J.K. Kim, H.N. Cho, D.Y. Kim, S. II Hong, Macromol. Chem. Phys.
2001, 201, 768.
[22] L. Lu, S.A. Jenekhe, Macromolecules 2001, 34, 6249.
[23] S. A. Jenekhe, L. Lu, M.M. Alam, Macromolecules 2001, 34, 7315.
[24] H. Krüger, S. Janietz, D. Sainova, A. Wedel, Macromol. Chem. Phys. 2003, 204,
1607.
[25] C.L. Chochos, N.P. Tzanetos, S.P. Economopoulos, V.G. Gregoriou, J. K. Kallitsis,
European Polymer Journal 2007, 43, 5065.
[26] Y. Lin, Y. Chen, Z. Chen, D. Ma, B. Zhang, T. Ye, Y. Dai, European Polymer
Journal 2010, 46, 997.
[27]J. Chen, Z. Xie, J.W.Y. Lam, C.C.W. Law, B.Z. Tang, Macromolecules 2003, 36,
1108.
[28] J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu,
B. Z. Tang, Chem. Mater. 2003, 15, 1535.
[29] H. Tong, Y. Hong, Y. Dong, M. Häussler, J. W. Y. Lam, Z. Guo, Z. Li, Z. Guo, B.
Z. Tang, Chem. Commun. 2006, 3705.
[30] H. Tong, Y. Dong, Y. Hong, M. Häussler, J. W. Y. Lam, H. H. Y. Sung, X. Yu, J.
Sun, I. D. Williams, H. S. Kwok, B. Z. Tang, J. Phys. Chem. C 2007,111, 2287.
[31] B. K. An, S. K. Kwon, S. D. Jung, S. Y. Park, J. Am. Chem. Soc.2002, 124,14410.
[32]Y. Liu, X. Tao, F. Wang, X. Dang, D. Zou, Y. Ren, M. Jiang, J. Phys. Chem. C 2008,122, 3975.
[33] K.S. Wong, H. Wang, G. Lanzant, Chem. Phys. Lett.1998, 288, 59.

Chapter3
[1] Y. Zheng, H. T. Davis Langmuir 2000, 16, 6453.
[2] R. Shenhar, T. B. Norten, V. M. Rottelo Adv. Mater. 2005, 17, 657.
[3] A. I. Cooper J. Mater. Chem.2000, 10, 207.
[4] A. Bohle, G. Brunklans, M. R. Hansen, T. W. Schleuss, A. F. M. Kilbinger, J.
Seltmann, H. W. Spiess Macromolecules 2010, 43, 4978.
[5] X. Q. Yang, J. J. Grailer, S. Pilla, D. A. Steeber, S. Gong, X. T. Shuai
Biofabrication 2010, 2, 2504.
[6] C. A. Orge, J. P. S. Sousa, F. Goncalves, C. Freire, J.J.M. Orfao, M.F.R. Pereira
Catalysis Letters 2009, 132, 101.
[7] A. Desjardins, A. Eisenberg Macromolecules 1991, 24, 5779.
[8] H.C. Kim, S.M. Park, W.D. Hinsherg Chem. Rev. 2010, 110, 146.
[9] Y. Ren, Y.W.Y. Lam, Y. Dong, B.Z. Tang, K.S. Wong J. Phys. Chem. B 2005,
109, 1135.
[10] B.K. An, S.K. Kwon, S.D. Jung, S.Y. Park J. Am. Chem. Soc., 2002, 124, 14410.
[11] A. Qin, C.K.W. Jin, Y. Tang, J.W.Y. Lam, J. Lin, F. Mahtab, P. Gao, B.Z. Tang
J. Phys. Chem. B 2008, 112, 9281.
[12] S. Jang, S.G. Kim, D. Jung, H. Kwon, J. Song, S. Cho, Y.C. Ko, H. Sohn Bull.
Korean Chem. Soc. 2006, 27, 1695.
[13] Y. Geng, D. E. Discher Polymer 2006, 47, 2519.
[14] Y. Geng, D. E. Discher J. Am. Chem. Soc.2005, 127, 12780.
[15] H.C. Kim, S.M. Park, W.D. Hinsherg Chem. Rev. 2010, 110, 146.
[16]T. Goldacker, V. Abetz, R. Stadler, I. Erukhimovich, L. Leibler Nature 1999, 398, 137.
[17] W. Zhang, L. Shi, R. Ma, Y. An, Y. Xu, K. Wu Macromolecules 2005, 38, 8850.
[18] C. M. Huang, K. H. Wei Macromolecules 2007, 40, 5067.
[19] X. Yang, L. Chen, B. Han, H. Duan Polymer 2010, 51, 2533.
[20] J. Y. Yu, M. J. Huang, C. H. Chen, C. S. Lin, C. H. Cheng J. Phys. Chem. C 2009,
113, 7405.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.16.218.62
論文開放下載的時間是 校外不公開

Your IP address is 3.16.218.62
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code