Responsive image
博碩士論文 etd-0728110-145146 詳細資訊
Title page for etd-0728110-145146
論文名稱
Title
氧化鋅奈米針紫外線感測器之研究
Study of Zinc Oxide Nanotip Ultraviolet Photodetector
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-08
繳交日期
Date of Submission
2010-07-28
關鍵字
Keywords
奈米針、水溶液法、氧化鋅、紫外線感測器
Nanotip, Zinc Oxide, ASD, UV Photodetector
統計
Statistics
本論文已被瀏覽 5691 次,被下載 0
The thesis/dissertation has been browsed 5691 times, has been downloaded 0 times.
中文摘要
在本研究論文中,我們以水溶液法(ASD)在參鋁的氧化鋅(AZO)/玻璃基板上備製氧化鋅(ZnO)奈米針。在超過六小時的成長後,在氧化鋅奈米針的下方發現類薄膜層。為了研究最長氧化鋅奈米針的長度的光響應而不考慮類薄膜層的影響,我們選擇六小時來成長氧化鋅奈米針,所成長的高度大約為4 μm。在氧化鋅奈米針上使用銦-鋅的指插式所製成的陽極與陰極來製作氧化鋅奈米針紫外線感測器。在濺鍍AZO時間為300秒時可以得到較佳光響應,原因為它具有較大的表面積對體積比。我們得到電流比值為10.9、上升時間為280秒以及下降時間為870秒。經由氮氣、氧氣以及笑氣退火一小時在300 oC中可以改善其光響應,原因在於在氧化鋅奈米針內的Zn(OH)2轉換成氧化鋅。在退火氣體中,由於笑氣的氧原子高分解率可以填補氧空缺使其有最佳的表現。其電流比值為26.04、上升時間為50秒以及下降時間為70秒。
Abstract
In this study, we prepare the zinc oxide nanotip with aqueous solution on Al doped ZnO/glass substrate. In excess of 6 hours growth, the film-liked layer is obtained in the bottom of ZnO nanotip. In order to study the photoresponse of maximum ZnO nanotip length without film-like layer, we choose 6 hours as the growth time of ZnO nanotip, which the height is almost the same of about 4 μm. For the fabrication of ZnO nanotip UV photodetector, In-Zn was use as anode and cathode electrodes in digitate type on the top of ZnO nanotip array. The photoresponse which use AZO buffer layer of 300 s is better than others due to the larger surface to volume ratio. We obtain that Ron/off is 10.9, rise time is 280 s, and decay time is 870 s. The thermal annealing at 300 °C in N2, O2, and N2O for 1 hr can improve the photoresponse, because the Zn(OH)2 in the ZnO nanotip gets converted into ZnO. Among annealing ambiences, the annealed ZnO nanotip in N2O show higher performance due to high decomposition of O atoms, which fills in the oxygen vacancy. We obtained that Ron/off is 26.04, rise time is 50 s, and decay time is 70 s at 300 oC in N2O.
目次 Table of Contents
Chapter 1 ...................................................................................................1
Introduction........................................................................................1
1.1 Properties ZnO One-dimensional Nano-structures........1
1.2 ZnO Film Ultraviolet Photodetectors ..............................2
1.3 ZnO Nanotip Ultraviolet Photodetector ..........................3
1.4 Growth Methods for ZnO Nanotip ..................................4
1.5 Advantages of Aqueous Solution Deposition (ASD) .......5
1.6 Motivation...........................................................................6
References ..................................................................................11
Chapter 2 .................................................................................................16
Experiments......................................................................................16
2.1 Glass Substrate Preparation ...........................................16
2.1.1 AZO RF Sputtering ......................................................16
2.2 ZnO Nanotip Growth Procedures by Aqueous Solution
Deposition...................................................................................17
2.3 Precursors of ASD-ZnO nanotip growth .......................18
2.4 Structure of ZnO Nanotip Ultraviolet Photodetector...19
2.5 Characterization...............................................................20
2.5.1 Physical properties of ZnO Nanotip.....................20
2.5.2 Chemical property of ZnO Nanotip .....................21
2.5.3 Optical Property of ZnO Nanotip ........................21
2.5.4 Electrical properties of ZnO Nanotip UV Photodetector.................................................................22
References ...................................................................................30
Chapter 3 .................................................................................................31
Results and Discussion.....................................................................31
3.1 Physical Properties of ZnO Nanotip ..............................31
3.1.1 Growth Rate of ZnO Nanotip in Deposition
Solution................................................................................31
3.1.2 Top View and Cross-section of ZnO Nanotip on
AZO/Glass...........................................................................31
3.2 XRD Analysis of ZnO Nanotip .......................................32
3.3 Chemical Properties of ZnO Nanotip ............................32
3.4 Optical Properties of ZnO Nanotip................................33
3.5 Electrical Properties of ZnO Nanotip Ultraviolet
Photodetector.............................................................................33
3.5.1 Photoresponse as a function of Sputtering-AZO
Time.....................................................................................34
3.4.2 Photoresponse as a Function of Thermal
Annealing ............................................................................35
References .........................................................................................62
Chapter 4 .................................................................................................63
Conclusions.......................................................................................63
參考文獻 References
[1]. D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, ZnO: growth ,doping and processing, materialstoday june 34~40 (2004)
[2]. S. J. Pearton, D. P. Norton, K. Ip, Y.W. Heo, and T. Steiner. ”Recent progress in processing and properties of ZnO,” Propress in materials science, 50, 294-340 (2005)
[3]. Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang,, Room-Temperature Ultraviolet Nanowire Nanolasers, Science 292 8 (2001)
[4]. R. L. Hoffman, B. J. Norris and J. F. Wager, ZnO-based transparent thin-film transistors, Appl. Phys. Lett., 82, 5
[5]. Chin-Cheng Hsu, N.L. Wu, Synthesis and photocatalytic activity of ZnO/ZnO2 composite, Journal of Photochemistry and Photobiology A: Chemistry 172 269–274 (2005)
[6]. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett. 84, 18
[7]. Brent A. Buchine, William L. Hughes, F. Levent Degertekin, and Zhong L. Wang, Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts, Nano. Lett. 6 1155-1159 (2006)
[8]. J B Baxter, AMWalker, K vanOmmering and E S Aydil, Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells, Nanotechnology 17 (2006) S304–S312
[9]. S. Guha, N.A. Bojarczuk, Appl. Phys. Lett. 72 (1998) 415.
[10]. E. Monroy, F. Calle, C. Angulo, P. Vila, A. Sanz, J.A. Garrido, E. Calleja, E. Munoz, S. Haffouz, B. Beaumont, F. Omnes, P. Gibart, Appl. Opt. 37 (1998) 5087.
[11]. A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M.A. Khan, D. Kuksenkov, H. Temkin, Appl. Phys. Lett. 71 (1997) 2334.
[12]. F. Vigue, E. Tournie, J. P. Faurie, IEEE J. Quantum Electron. 37 (2001) 1146.
[13]. C. A. Smith, H. W.H. Lee, V. J. Leppert, S. H. Risbud, Appl. Phys. Lett. 75 (1999) 1688.
[14]. Y. Yamada, K. Yoshimura, S. Fujita, T. Taguchi, F. Sasaki, S. Kobayashi, T. Tani, Appl. Phys. Lett. 70 (1997) 1429.
[15]. M. D. Whitfield, S. S. Chan, R. B. Jackman, Appl. Phys. Lett. 68 (1996) 290.
[16]. Takahashi, Y.; Kanamori, M.; Kondoh, A.; Minoura, H.; Ohya, Y.Jpn. J. Appl. Phys., Part 1, 33, 6611-6615(1994).
[17]. H. Kind, H. Yang, B. Messer, M. Law, P. Yang, Adv. Mater. 14 (2002) 158.
[18]. Q. H. Li, Q. Wan, Y. K. Liang, T. H. Wang, Appl. Phys. Lett. 84 (2004) 4556.
[19]. Y. Li, X. Dong, C. Cheng, X. Zhou, P. Zhang, J. Gao, H. Zhang, Fabrication of ZnO nanorod array-based photodetector with high sensitivity to ultraviolet, Physica B 404 (2009) 4282–4285
[20]. Soci, C.; Bao, X. Y.; Zhang, A.; Liu, J.; Wang, D. J. Nanosci. Nanotechnol. (2007), to be submitted.
[21]. Bube, R. H. Photoelectronic Properties of Semiconductors; Cambridge University Press: Cambridge (1992).
[22]. Rose, A. Concepts in PhotoconductiVity and Allied Problems; Interscience Publishers: New York. (1963)
[23]. Jie, J. S.; Zhang, W. J.; Jiang, Y.; Meng, X. M.; Li, Y. Q.; Lee, S. T. Nano Lett., 6, 1887-1892. (2006)
[24]. Li, Q. H.; Liang, Y. X.; Wan, Q.; Wang, T. H. Appl. Phys. Lett., 85, 6389-6391 (2004).
[25]. Zhiyong Fan, Deepanshu Dutta, Chung-Jen Chien, Hsiang-Yu Chen, and Evan C. Brown, Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays, Appl. Phys. Lett. 89, (2006) 213110
[26]. Seu Yi Li, Chia Ying Lee, Tseung Yuen Tseng, Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process, Journal of Crystal Growth 247 (2003) 357–362
[27]. Hao-Ying Lu, Sheng-Yuan Chu, Sheng-Hsien Cheng, The vibration and photoluminescence properties of one-dimensional ZnO nanowires, Journal of Crystal Growth 274 (2005) 506–511
[28]. Xianghua Kong, Xiaoming Sun, Xiaolin Li, Yadong Li, Catalytic growth of ZnO nanotubes, Materials Chemistry and Physics 82 (2003) 997–1001
[29]. Sungyeon Kim, Min-Chang Jeong, Byeong-Yun Oh, Woong Lee, Jae-Min Myoung, Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering, Journal of Crystal Growth 290 (2006) 485–489
[30]. Wen-Ting Chiou, Wan-Yu Wu, Jyh-Ming Ting, Growth of single crystal ZnO nanowires using sputter deposition, Diamond and Related Materials 12 (2003) 1841–1844
[31]. Dong Chan Kim, Bo Hyun Kong, Hyung Koun Cho, Dong Jun Park and Jeong Yong Lee, Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition, Nanotechnology 18 (2007) 015603 (6pp)
[32]. Ying He, Wenbin Sang, Jun’an Wang, Ruofeng Wu, Jiahua Min, Vertically well-aligned ZnO nanowires generated with self-assembling polymers, Materials Chemistry and Physics 94 (2005) 29–33
[33]. Jean-Franc-ois Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’ol, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-drivenammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162
[34]. S. Music, S. Popovic, M. Maljkovic, D. Dragcevic, Influence of synthesis procedure on the formation and properties of zinc oxide, Journal of Alloys and Compounds 347 (2002) 324–332
[35]. S. Y. Li, P. Lin, C. Y. Lee, M. S. Ho, T. Y. Tseng, Fabrication of vertical ZnO nanowires on silicon (100) with epitaxial ZnO buffer layer, Nano Lett. 5 (2005) 1231
[36]. K. Keem, H. Kim, G. T. Kim, J. S. Lee, B. Min, K. Cho, M. Y. Sung, S. Kim, Appl. Phys. Lett. 84 (2004) 4376.
[37]. S. E. Ahn, H. J. Ji, K. Kim, G. T. Kim, C. H. Bae, S. M. Park, Y. K. Kim, J. S. Ha, Appl. Phys. Lett. 90 (2007) 153106.
[38]. R. Ghosh, M. Dutta, D. Basak, Appl. Phys. Lett. 91 (2007) 73108.
[39]. D. Basak, G. Amin, B. Mallik, G.K. Paul, S.K. Sen, J. Cryst. Growth 256 (2003) 73.
[40]. Zhuo Wang, Xue-feng Qian, Jie Yin, and Zi-kangZhu, Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency, Journal of Solid State Chemistry 177 (2004) 2144–2149
[41]. Youngjo Tak and Kijung Yong, Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method, J. Phys. Chem. B 2005, 109, 19263-19269
[42]. Jean-Franc-ois Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’o, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-driven ammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162
[43]. L. Wang, G. Liu, L. Zou, D. Xue, Phase evolution from rod-like ZnO to plate-like zinc hydroxysulfate during electrochemical deposition, Journal of Alloys and Compounds 493 (2010) 471.
[44]. S. Peulon, D. Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Adv. Mater. 8 (1996) 166.
[45]. H. Kind, H. Yang, B. Messer, M. Law, P. Yang, Adv. Mater. 14 (2002) 158.
[46]. Q. H. Li, Q. Wan, Y. K. Liang, T. H. Wang, Appl. Phys. Lett. 84 (2004) 4556.
[47]. C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires, Chem. Phys. Lett. 416 (2005) 75
[48]. S.Y. Tsai, T. H. Lu, I.C. Chen, V.R. Shinde, C.D. Lokhande, R.S. Mane, Sung-Hwan Han, Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect, Applied Surface Science 245 (2005) 407
[49]. S.E. Ahn, H. J. Ji, K. Kim, and G. T. Kimb, Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire, Appl. Phys. Lett. 90 (2007) 153106
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.140.185.170
論文開放下載的時間是 校外不公開

Your IP address is 3.140.185.170
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code