Responsive image
博碩士論文 etd-0728110-150844 詳細資訊
Title page for etd-0728110-150844
論文名稱
Title
硒化鋅薄膜成長與特性之研究
Growth and characterization of ZnSe thin film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
147
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-21
繳交日期
Date of Submission
2010-07-28
關鍵字
Keywords
玻璃基板、分子束沈積、硒化鋅
ZnSe, MBD, glass substrates
統計
Statistics
本論文已被瀏覽 5644 次,被下載 0
The thesis/dissertation has been browsed 5644 times, has been downloaded 0 times.
中文摘要
自1990年,開始研究以硒化鋅( ZnSe )為基礎的寬能隙之II-VI族材料;例如藍綠發光二極體。近年來,ZnSe材料可用在在各種光電元件,例如:ZnSe材料被應用在CuInSe2太陽能電池的視窗層(window layer)。然而,ZnSe薄膜在大面積低成本的基板如玻璃基板,尚未完全被開發。降低了ZnSe薄膜的可靠性與適用性。改善元件的性能,需要去降低介面層的缺陷,得到較好的結晶性;並且提供高品質的磊晶層。
本文的研究,是在文獻上第一次應用自我限制單層磊晶(SME)技術,於起始的成長狀態時,成長ZnSe薄膜緩衝層。目的是使ZnSe薄膜的結晶性,能夠在較小厚度的緩衝層,一層接一層,逐漸被改善。即晶格失序,在經過SME幾個循環成長之後,快速降低。在成長緩衝層後,用MBD技術沈積的ZnSe薄膜,介面層的缺陷與晶格不匹配,顯著的被減少。因此,含有緩衝層的ZnSe薄膜,有較好的結晶性。
在沈積ZnSe薄膜時,在起始成長狀態,自我限制單層磊晶程序用來。預先成長緩衝層。自我限制單層磊晶成長模式是使用物源Zn與Se交替沉積;幾個循環之後,成長模式改成分子束沈積技術。薄膜沈積在低基板溫度範圍;為250–350°C,且Se/Zn分子束等效壓力比,是介於0.77∼1.87之間。
直接成長的ZnSe薄膜,是用X-ray量測,決定其薄膜結構及其晶格取向性(preferred orientation)。由X-ray量測的結果,詳細比較與討論,在不同成長條件下,薄膜含緩衝層與不含緩衝層的特性,得到ZnSe薄膜成長最佳化條件。ZnSe薄膜的組成由能量分散分析儀得到。ZnSe薄膜的結構特性,是利用X-ray繞射技術量測。最佳薄膜成長條件是利用分析與比較各成長條件下,X-ray繞射波峰的半高寬與強度判斷得到。ZnSe薄膜的光學特性與薄膜的相關性,是利用PL光譜中,由比較Excitonic peak 和Broad band的peak intensity說明。另外,薄膜含緩衝層與不含緩衝層的結構參數;如:結晶性、晶格常數、晶粒大小、應力和差排密度等與它們的成長條件的相關性,也仔細比較和描述。
最後,由本文的研究結果證明,用SME和MBD技術在玻璃基板上,成長的ZnSe薄膜,是成功的。且ZnSe薄膜具有足夠的品質,可應用在ZnSe材料相關的各種元件。
Abstract
The research and development of zinc selenide (ZnSe) based wide-gap II–VI materials and related blue/green light-emitting devices have significantly progressed since 1990. ZnSe is also a promising material for use in windows, lenses, output couplers, beam expanders, optically controlled switching, visible transmission and giant photo-resistivity. Recently, ZnSe has become an important material used as the window layer of CuInSe2-based solar cells . To improve device performance, it is necessary to reduce interface defects and improve epitaxial layer quality. However, ZnSe thin films on glass substrates with high reliability and applicability have not yet been developed.
In this study, a ZnSe buffer layer was firstly grown by SME during the initial stage of film growth; the film crystallinity could gradually be improved layer by layer with smaller thicknesses. While the lattice disorder of the buffer layer decreased rapidly after several cycles of SME growth, the interfacial lattice mismatch between the buffer layer and the ZnSe film deposited by MBD was reduced. Thus, ZnSe films with buffer layers demonstrated better crystallinity.
Initial growth stage evaluation of high-quality ZnSe films deposited on glass substrate was investigated. The self-limiting monolayer epitaxial (SME) process was used to pre-growth the buffer layer for a zinc selenide (ZnSe) film deposited. After alternating depositions for several cycles, the growth mode was changed to the molecular beam deposition (MBD) mode under growth conditions. Films deposited at substrate temperatures of 250–350°C and Se/Zn beam equivalent pressure (BEP) ratios of 0.77–1.87 were investigated.
The crystal structure and preferred orientation of as-grown ZnSe films were examined using X-ray diffraction (XRD) patterns. The optical properties of the ZnSe films were revealed by photoluminescence spectra.
The structure properties of as-deposited ZnSe films have been measured by X-ray diffraction (XRD) technique. The optimum film growth condition has been determined rapidly by comparing and analyzing the relative full width at half-maximum (FWHM) and peak intensity of XRD spectra. The composition of ZnSe films is determined by energy dispersive spectroscopic (EDS) analysis. Optical properties of ZnSe films are characterized by photoluminescence spectra. In addition, the structural parameters, crystallinity, lattice constant, grain size, strain, dislocation density and orientation of ZnSe film calculated are correlated with their growth conditions. The characteristics of the ZnSe films with and without a buffer layer were compared and discussed in detail.
Finally, our results demonstrate that how the quality of ZnSe film can be improved on glass substrates for application to various devices.
目次 Table of Contents
目錄..................................................................................VIII
表目錄.............................................................................. XII
第 一 章 導 論................................................................... 1
1-1 研究背景及重要性.................................................... 1
1-2 硒化鋅的特性............................................................ 4
1-3 ZnSe 薄膜製備技術.................................................. 5
1-3-1 ZnSe 薄膜製備演進.............................................. 5
1-3-2 在不同基板沈積ZnSe 薄膜.................................. 6
1-3-3 ZnSe-based 光電元件......................................... 8
1-3-4 PN 摻雜控制.......................................................... 9
1-3-5 金屬歐姆性( Ohmic )接觸.................................. 10
1-4 元件應用與近年來之研究發展情況....................... 10
1-5 論文架構................................................................... 11
第 二 章 實 驗 原 理 與 方 法......................................... 13
2-1 分子束磊晶(MBE)系統之原理................................ 13
2-2 分子束磊晶系統結構............................................... 14
2-3 分子束沈積(MBD)成長硒化鋅(ZnSe)薄膜之步驟.19
2-3-1 成長前基板處理步驟............................................ 19
2-3-2 蒸鍍源處理............................................................ 20
2-3-3 分子束沈積(MBD)成長硒化鋅(ZnSe)薄膜之步驟 21
2-4 量測儀器................................................................... 24
2-4-1 X 光繞射儀 (XRD)................................................ 24
2-4-2 光性分析測試 (PL measurement) ................... 25
2-4-3 霍爾量測 (Hall measurement) ......................... 26
2-4-4 能量分散分析儀(Energy Dispersive Spectroscopy;EDS) ....................................... 29
第三章 分子束沈積薄膜理論......................................... 30
3-1 分子束沈積法 (molecular beam deposition) [54, 55] .. 30
3-1-1 MBE 成長ZnSe 薄膜的成長模型...................... 30
3-1-2 成長速率對製程參數相關性.............................. 34
3-1-3 Zn 流量分子束強度對成長速率和基板溫度的相關性
........... 36
3-1-4 成長速率與覆蓋率的相關性............................ 37
3-2 分子束沈積法(MBD)成長條件最佳化................. 38
3-3 自我限制單層磊晶法 (SME) [57, 58] ................. 43
3-3-1 模型與理論........................................................ 45
3-3-2 表面覆蓋............................................................. 47
3-3-3 昇華時間與基板溫度的關係............................. 48
3-3-4 吸附時間與基板溫度的關係............................. 49
第四章 結果與討論....................................................... 52
4-1 ZnSe 薄膜的結構描述........................................... 52
4-2 X-ray 繞射分析....................................................... 53
4-2-1 自我限制單層磊晶成長對薄膜結晶性的影響.. 53
4-2-2 薄膜沈積在各種成長條件.................................. 56
4-3 薄膜組成與成長速率.............................................. 61
4-3-1 成長速率............................................................... 61
4-3-2 偏離化學計量組成(deviation from stoichiometric
composition) ................................................................. 61
4-4 薄膜結構參數........................................................... 62
4-4-1 晶格參數 (Lattice parameter) ........................... 62
4-4-2 晶粒大小............................................................... 64
4-4-3 應力 (stress)........................................................ 66
4-4-4 錯位密度 (Dislocation density)......................... 67
4-5 光激發螢光頻譜分析............................................... 68
4-6 光穿透光譜分析....................................................... 71
第五章 結論與未來展望................................................. 72
參考文獻.........................................................................115
參考文獻 References
[1] K. Mohammed, D. A. Cammack, R. Dalby, P. Newbury, B.L. Greenberg, J. Petruzzello and R. N. Bhargava, Appl. Phys. Lett. 50 (1987) 37.
[2] Y. T. Shin, W. C. Chiang, C. S. Yang, M.C. Kuo and W. C. Chou, J. Appl Phys. 92 (2002) 2446.
[3] A. Kabir, M. Panfilova, A. Pawlis, H.P. Wagner, K. Lischka, Microelectronics Journal 40 (2009) 303.
[4] Daqin Yun, Wei Feng, Hongcai Wu, Katsumi Yoshino, Solar Energy Materials and Solar Cells 93 (2009) 1208.
[5] Chansik Park, Tae Hyun Yoon, Colloids and Surfaces B: Biointerfaces, 75 (2010) 472.
[6] K. Hyomi, M. Sakuma, A. Murayama, Journal of Luminescence, 129 (2009) 1715.
[7] M. A . Haase, J. Qui, J . M. Depuydt, H. Chang, Appl. Phys. Lett. 59 (1991) 1272.
[8] H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grillo, M. Kobayashi, R. L. Gunshov, Appl. Phys. Lett. 59 (1991) 3619.
[9] P. Juza, H. Zajicek, H. Sitter, M. Helm, W. Faschinger, K. Lischka, Appl. Phys. Lett. 61 (1992) 3133.
[10] M. A. Hasse, J. Qiu, J. M. DePuydt, and H. Chang, Appl. Phys. Lett. 59 (1991) 1272.
[11] W. Stutius, Appl. Phys. Lett. 38 (1981) 352.
[12] N. T. Chen, M. Yokoyama, and H. Y. Ueng, J. Cryst. Growth 216 (2000) 152.
[13] M. Yokoyama, N. T. Chen, and H. Y. Ueng, Jpn. J. Appl. Phys. 39 (2000) 1665.
[14] M. Yokoyama, N. T. Chen, and H. Y. Ueng, J. Cryst. Growth 212 (2000) 97.
[15] M. Yokoyama and N. T. Chen, J. Cryst. Growth 223 (2001) 369.
[16] F. NaKanishi, H. Doi, T. Yamada, T. Matsuoka, S. Nishine, K. Matsumoto, and T. Shirakawa, Appl. Surf. Sci. 117/118 (1997) 489.
[17] S. Tomiya, E. Morita, M. Ukita, H. Okuyama, S. Itoh, K. Nakano, and A. Ishibashi, Appl. Phys. Lett. 66 (1995) 1208.
[18] Harry E. Ruda, “Widegap II-VI Compounds for Optoelectronic Application”.
[19] Marvin L, Cohen and James R, Chelikowsky in Electronic Structure and Optical Properties of Semiconductors, Published by Springer-Verlag, (1989) p113.
[20] T.Yao, Y.Miyoshi, Y.Makita and S.Maekawa, Jap. J. Appl. Phys. 16 (1977) 369.
[21] E. E. Khawaja, S. M. A. Durrani, A. B. Hallak, M. A. Salim, M. S. Hussain, J. Phys. D: Appl. Phys. 27 (1994) 1008.
[22] K. Mizuno, T. Kobayashi, F. Fujiki, H. Okamoto, P. Prete, N. Lovergine, Phys. B 376–377 (2006) 782.
[23] Y. Ohno, T. Taishi, I. Yonenaga, S. Ichikawa, R. Hirai, S. Takeda, Phys. B 401–402 (2007) 650.
[24] T. L. Chu, S. S. Chu, G. Chen, J. Britt, C. Ferekides and C. Q. Wu, J. Appl. Phys. 71 (1992) 3865.
[25] J. S. Song, J.H. Chang, D.C. Oh, J.J. Kim, M.W. Cho, H. Makino, T. Hanada, T. Yao, J. Cryst. Growth 249 (2003) 128.
[26] L. H. Kuo, K. Kimura, S. Miwa, T. Yasuda, T. Yao, Appl. Phys. Lett. 69 (1996) 1408.
[27] C.T. Hsu, Thin Solid Films 335 (1998) 284.
[28] Jin-Sang Kim, Jong-Hyeng Song, Sang-Hee Suh, Mat. Sci. Semicond. Process., 3 (2000) 201.
[29] Hyun-Chul Ko, Doo-Cheol Park, Yoichi Kawakami, Shizuo Fujita, Shigeo Fujita, J. Cryst. Growth, 178 (1997) 246.
[30] G. Riveros, H. Gomez, R. Henriquez, R. Schrebler, R.E. Marotti, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 70 (2001) 255.
[31] J. Herrero, M.T. Gutierrez, C. Guillen, J.M. Dona, M.A. Martinez, A.M. Chaparro, R. Bayon, Thin Solid Films 361-362 (2000) 28.
[32] A. M. Chaparro, M. A. Martinez, C. Guillen, R. Bayon, M. T. Gutierrez, J. Herrero, Thin Solid Films 361-362 (2000) 177.
[33] M. Singh, Y.K. Vijay, Appl. Surf. Sci. 239 (2004) 79.
[34] S. Venkatachalam, D. Mangalaraj, Sa.K. Narayandass, K. Kim, J. Yi, Vacuum 81 (2007) 928.
[35] S. Venkatachalam, D. Mangalaraj, Sa.K. Narayandass, Appl. Surf. Sci. 253 (2007) 5137.
[36] G.I. Rusu, M. Diciu, C. Pıˆrghie, E.M. Popa, Appl. Surf. Sci. 253 (2007) 9500.
[37] G.I. Rusu, V. Ciupina, M.E. Popa, G. Prodan, G.G. Rusu, C. Baban, J. Non-Cryst. Solids 352 (2006) 1525.
[38] Y.P. Venkata Subbaiah, P. Prathap, M. Devika, K.T. Ramakrishna Reddy, Phys. B 365 (2005) 240.
[39] R.B. Kale, C.D. Lokhande, Appl. Surf. Sci. 252 (2005) 929.
[40] Vipin Kumar, K.L.A. Khan, Gajendra Singh, T.P. Sharma, M. Hussain, Appl. Surf. Sci. 253 (2007) 3543.
[41] B. Hahn, E. Pschorr-Schoberer, E. Griebl, M. Kastner, W. Gebhardt, J. Cryst. Growth 191 (1998) 65.
[42] S. Schorr, V. Riede , D. Spemann, and Th. Doering, J. Alloys Compd. 414 (2006) 26.
[43] Q. Zhang, W. Charles, B. Li, A. Shen, C. A. Meriles, and M. C. Tamargo, J. Cryst. Growth 311 (2009) 2603.
[44] M.A.Haase,J.Qui,J.M.DePuydt and H.Cheng, Appl. Phys.Lett 59 (1991) 1272.
[45] Julia M.Wallace B.Sc, “Growth and characterization of hetroepitaxial ZnSe and ZnSxSe1-x”, PHD,Thesis (1992).
[46] J.L.deMiguel, S.M.Shibli, M.C.Tamargo and B.J.Skromme, Appl.Phys.Lett. 53 (1988) 2065.
[47] J.M.Wallance, J.Simpson, S.Y.Wang, H.Stewart, J.J Hunter, S.J.A.Adams, J. Cryst. Growth 1992 (1992) 320.
[48] D.J.Chadi and K.J.Chang, Appl.Phys.Lett 55 (1989) 575.
[49] S. Agilan, S. Venkatachalam, D. Mangalaraj, Sa. K. Narayandass, S. Velumani, G. Mohan Rao, Vijay P. Singh, Materials Characterization 58 (2007) 701.
[50] L. Djellal, A. Bouguelia, M. Kadi Hanifi, M. Trari, Solar Energy Materials and Solar Cells 92 (2008) 594.
[51] Contreras, M.A., Ramanathan, K., AbuShama, J., Hasoon, F., Young, D.L., Egaas, B., Noufi, R., Progress in Photovoltaic Research and Applications 13 (2005) 209.
[52] A. Goetzberger, C. Hebling, H.W. Schock, Mater. Sci. Eng. R 40 (2003) 1.
[53] R.N. Bhattacharya, M.A. Contreras, B. Egaas, R.N. Noufi, A. Kanevce, J.R. Sites, Appl. Phys. Lett. 89 (2006) 253503.
[54] Z. Zhu, T. Nomura, M. Miyao, and M. Hagino, J. Cryst. Growth 95 (1989) 529.
[55] Z. Zhu, T. Nomura, M. Miyao, and M. Hagino, J. Cryst. Growth 96 (1989) 513.
[56] Z. Zhu, M. Hagino, K. Uesugi, S. Kamiyama, M. Fujimoto, and T. Yao, J. Cryst. Growth 99 (1990) 441.
[57] W. Faschinger, P. Juza, S. Ferreira, H. Zajicek, A. Pesek, H. Sitter, and K. Lischka, J. Cryst. Growth 128 (1993) 622.
[58] W. Faschinger, P. Juza, S. Ferreira, H. Zajicek, A. Pesek, H. Sitter, and K. Lischka, Thin Solid Films 225 (1993) 270.
[59] T. Yao, in: The Technology and Physics of Molecular Beam Epitaxy, Ed. E.H.C. Parker (Plenum, New York, 1985) ch. 10, pp. 313-343.
[60] Z. Zhu, T. Nomura, M. Miyao, and M. Hagino, Japan. J. Surface Sci. 9 (1988) 343.
[61] N. Matsumura, K. Maemura, N. Takanaka, S. Ichikawa, and J. Saraie, J. Cryst. Growth 150 (1995) 755.
[62] S. Ichikawa, N. Matsumura, K. Yamawaki, K. Senga and J. Saraie, J. Crystal Growth 138 (1994) 14.
[63] Y. Horikoshi, M. Kawashima and H. Yamaguchi, Jpn. J. Appl. Phys. 25 (1986) L 868.
[64] T. Yao and T. Takeda, J. Crystal Growth 81(1987) 43.
[65] T. Yao, M. Fujimoto, K. Uesugi and S. Kamiyama, in: Growth and Optical Properties of Wide-Gap Il-VI Low- Dimensional Semiconductors, Eds. T.C. McGill et al.(Nijhoff, The Hague, 1989).
[66] Z. Zhu, M. Hagino, K. Uesugi, S. Kamiyama, M. Fujimoto, and T. Yao, Japan. J. Appl. Phys. 28 (1989) 1659.
[67] C. A. Estrada, P. K. Nair, M. T. S. Nair, R. A. Zingaro, and E. A. Meyers, J. Electrochem. Soc. 141 (1994) 802.
[68] T. L. Chu and S. S. Chu, Prog. Photovolt: Res. Appl. 1 (1993) 31.
[69] S. T. Lakshmikumar and A. C. Rastogi, Thin Solid Films 259 (1995) 150.
[70] ICDD 00-037-1463 and JCPDS 37-1463 for cubic (zinc-blende type) structure; and ICDD 01-080-0008 and JCPDS 15-105 for hexagonal (wurtzite-type) structure.
[71] H. Hao, X. Yao, and M. Wang, Opt. Mater. 29 (2007) 573.
[72] R. B. Kale, C. D. Lokhande, R. S. Mane, and S. H. Han, Appl. Surf. Sci. 252 (2006) 5768.
[73] G. I. Rusu, M. E. Popa, G. G. Rusu, and I. Salaoru, Appl. Surf. Sci. 218 (2003) 223.
[74] I. Bhat and S. Akram, J. Cryst. Growth 138 (1994) 127.
[75] W. F. Egelhoff, Jr., P. J. Chen, C. J. Powell, M. D. Stiles, R. D. McMichael, J. H. Judy, K. Takano, and A. E. Berkowitz, J. Appl. Phys. 82 (1997) 6142.
[76] C. X. Yang, B. Shashishekar, H. D. Chopra, P. J. Chen, and W. F. Egelhoff, Jr., J. Appl. Phys. 89 (2001) 7121.
[77] J. Ihanus, M. Ritala , M. Leskela, T. Prohaska, R. Resch, G. Friedbacher, and M. Grasserbauer, Appl. Surf. Sci. 120 (1997) 43.
[78] D. Curie and J.S. Prener, Physics and Chemistry of II-VI Compounds, Chap. 9, North-Holland Publ., Amsterdam, 1967, p. 445.
[79] Kittel C. Introduction to Solid State Physics. New York: Wiley, 1996. chap. 2.
[80] Oztas M, Bedir M, Bakkaloglu OF, Ormanci R. Acta Physical Polonica A 107 (2005) 525.
[81] Ovid’ko IA. Rev. Adv. Mater. Sci. 1 (2000) 61.
[82] Nix WD, Mec. Proper., Thin Films, Nadai Medal Lecture, ASME Congress, New York:2001.
[83] C.K. De, N.K. Mishra, Indian J. Phys. 71 (1997) 530.
[84] C. D. Lee, S. I. Min, S. K. Chang, J. Cryst. Growth 159 (1996) 108.
[85] Y. -M. Yu, S. Nam, Byungsung O, K. -S. Lee, P. Y. Yu, Jongwon Lee, Y. D. Choi, J. Cryst. Growth 243 (2002) 389.
[86] Jia-zhen Zheng, J. W. Allen, H. M. Yates and, J. O. Williams, J. Cryst. Growth 117 (1992) 357.
[87] C.S. Fang, Q.T. Gu, J.Q. Wei, Q.W. Pan, W. Shi, J.Y. Wang, J. Crystal Growth 209 (2000) 542.
[88] J. Luyo-Alvarado, M. Meléndez-Lira, M. López-López, and I. Hernández-Calderón, J. Appl. Phys. 84 (1998) 1551.
[89] V. Bousquet, C. Ongaretto, M. Laügt, M. Behringer, E. Tournié, and J. P. Faurie, J. Appl. Phys. 81 (1997) 7012.
[90] J. E. Potts, H. Cheng, S. Mohapatra, and T.L. Smith, J. Appl. Phys. 61 (1987) 333.
[91] C. D. Lee, B. K. Kim, J.W. Kim, H.L. Park, C. H. Chung, S. K. Chang, J. I. Lee, and S. K. Noh, J. Cryst. Growth 138 (1994) 136.
[92] X. B. Zhang, K. L. Ha, S.K. Hark; Journal of Crystal Growth 223 (2001) 528.
[93] T. Ganguli, S. Porwal, T. Sharma, A. Ingale, S. Kumar, P. Tiwari, A.K. Balamurugan, S. Rajagopalan, A.K. Tyagi, K.S. Chandrasekaran, B.M. Arora, and K.C. Rustagi, Thin Solid Films 515 (2007) 7834.
[94] M. Godlewski, E. Guziewicz, K. Kopalko, E. Łusakowska, E. Dynowska, M.M. Godlewski, E.M. Goldys, and M.R. Phillips, J. Lumin. 102–103 (2003) 455.
[95] B.J. Yang, H. Tian, and X.W. Fan, J. Lumin. 48 & 49 (1991) 884.
[96] T. Muranoi, J. Cryst. Growth 115 (1991) 679.
[97] J. Luyo-Alvarado, M. A. Santana-Aranda, M. Mel´endez-Lira, M. Lopez-L´opez, V. H. M´endez, M. A. Vidal, H. Yonezu, Thin Solid Films 373 (2000) 37.
[98] C. Pong, R. C. DeMattei, R. S. Feigelson, J. Cryst. Growth 128 (1993) 650.
[99] T. Muranoi, S. Onizawa, M. Sasaki; J. Cryst. Growth 138 (1994) 255.
[100] S. A. Telfer , G. Horsburghb, J. S. Milnes, C. Morhain, P. J. Thompsonb, K. A. Prior, B. C. Cavenett; J. Cryst. Growth 184/185 (1998) 51.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.204.99.5
論文開放下載的時間是 校外不公開

Your IP address is 44.204.99.5
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code