Responsive image
博碩士論文 etd-0728110-152849 詳細資訊
Title page for etd-0728110-152849
論文名稱
Title
錯位融接之光子晶體光纖干涉儀
Photonic-Crystal-Fibers-Based Interferometers by Misaligned Splicing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-23
繳交日期
Date of Submission
2010-07-28
關鍵字
Keywords
錯位融接、干涉儀
interferometer, misaligned splicing
統計
Statistics
本論文已被瀏覽 5646 次,被下載 0
The thesis/dissertation has been browsed 5646 times, has been downloaded 0 times.
中文摘要
近年來,越來越多不同類型的干涉儀被提出並且廣泛地討論,利用其干涉的特性,干涉儀可以應用在許多不同領域。在本論文中,我們利用錯位融接的方式,製作光子晶體光纖式干涉儀,其原理是將單模光纖以及光子晶體光纖融接在一起時,利用纖心的錯位融接,激發出纖心模態以及纖衣模態。此兩種模態以不同速度在光子晶體光纖中傳遞,在第二個融接點時,兩個模態又重新結合並傳遞至單模光纖中,利用兩模態在光子晶體光纖傳遞過程中所累積之相位差來產生干涉的現象。由量測結果我們發現,光子晶體光纖長度會影響到我們所觀察到的干涉現象,當長度增加時,相位差增加,干涉條紋間的間距會縮小,這跟其他文章的結果是相符合的。證明了我們成功\地利用錯位融接的方式製作出光子晶體光纖式干涉儀。
我們利用此光子晶體光纖式干涉儀進行溫度、曲率半徑、外在環境折射率的感測,觀察干涉現象的改變,並計算此干涉儀對這些外在參數之靈敏度。由測量結果得知我們所製作的光子晶體光纖式干涉儀對溫度是非常不敏感的,因此可以在高溫下應用。此外,當我們改變外在環境折射率從1.404增加至1.428時,干涉頻譜會往長波長移動並呈現指數型的關係,所以我們可以將此元件拿來當作外在環境感測器使用。此外,我們還製作了液體填充光子晶體光纖式干涉儀,並且進行外在環境折射液及曲率半徑的量測,此元件對曲率半徑的靈敏度可以達到8.5nm/m-1。另外,當我們進行外在環境折射率的量測時,有填充折射液的光子晶體光纖干涉儀會比沒填充折射液的干涉儀來的不敏感,故我們發現此類型的干涉儀也是非常適合拿來當作感測器的。
Abstract
We propose a PCF-based interferometer by the misaligned splicing method. The PCF-based interferometers are composed of a photonic crystal fiber (PCF) and single-mode fibers (SMFs) which are spliced with lateral offsets. As the wave propagates at the first splicing point, the lateral offset will excite the cladding mode and the core mode simultaneously. As the two modes reach the other splicing point, they are recombined and coupled into another SMF. Thus, we can observe the interference pattern resulted from the phase difference between the two modes. In addition, as the length of PCF is increased, the average splicing of the interference fringes become smaller in the same measured range.
We demonstrate the applications of the PCF-based interferometer as temperature, bending, and the surrounding refractive index sensors. The temperature sensitivity for the 2-cm and 4-cm PCF-based-interferometer is 3.9.~4.3pm/°C and 3.5~4.3pm/°C, respectively. As we increase the surrounding refractive index, the curves move toward longer wavelengths. Besides, the measured bending sensitivity of the PCF-based interferometer is 3.8~4.2nm/m-1.
We also fabricated the liquid-filled-PCF-based interferometers by using the vacuum filling method. The measured bending sensitivity of the liquid-filled-PCF-based interferometer is 8.5nm/m-1 which is higher than that of the PCF-based interferometer. The measured surrounding refractive index sensitivity is insensitive. Thus, this liquid-filled-PCF-based interferometer can also be utilized as a sensor.
目次 Table of Contents
1 Introduction 1
1.1 Photonic Crystal Fiber . . . . . . . . . . 1
1.2 interferometer . . . . . . . . . . . . . . 2
1.3 Chapter Outline . . . . . . . . . . . . . . 5
2 Theory and Fabrication of PCF-based
Interferometers 12
2.1 Overview . . . . . . . . . . . . . . . . . 12
2.2 Theoretical Analysis . . . . . . . . . . . . 12
2.3 PCF-based Interferometer by Misalignment
Method . . . . . . . . . . . . . . . . . . 15
2.4 Vacuum Filling Method . . . . . . . . . . 16
3 Experimental Results of PCF-based
Interferometers . . . . . . . . . . . . . . 24
3.1 Overview . . . . . . . . . . . . . . . . . . 24
3.2 Measurement Setups and Results of
PCF-based interferometer . . . . . . . . 24
3.3 Temperature Sensing Property. . . . . . 25
3.4 Surrounding Refractive Index Sensing
Property . . . . . . . . . . . . . . . . . . . 27
3.5 Bending Sensing Property . . . . . . . . 28
4 Experimental Results of Liquid-Filled-
PCF-Based Interferometers 44
4.1 Overview . . . . . . . . . . . . . . . . . . . 44
4.2 Interference Properties of Liquid-Filled-
PCF- Based Interferometers. . . . . . . . 44
4.3 Surrounding Refractive Index Sensing
Property . . . . . . . . . . . . . . . . . . . 45
4.4 Bending Sensing Property . . . . . . . . . 46
5 Conclusions 55
Bibliography 57
參考文獻 References
[1] Birks, T. A., J. C. Knight, and P. St. J. Russell,
“Endless single-mode photonic crystal fiber,” Opt.
Lett., vol. 22, pp. 961–963, 1997.
[2 ]Chen, C. P., and C. P. Yu,
“Long-period fiber grating based on selectively
liquid-filled photonic crystal fibers,” Proc. SPIE, vol.
7609, pp. 760911, 2010.
[3] Choi, H. Y., M. J. Kim, and B. H. Lee,
“All-fiber mach-zehnder type interferometers
formed in photonic crystal fiber,” Opt. Express, vol.
15, pp. 5711–5719, 2007.
[4] Culshaw, B., and A. Kersey,
“Fiber-Optic Sensing: A Historical Perspective,” J.
Lightwave Technol., vol. 26, pp. 1064–1078, 2008.
[5] Du, J., Y. Dai, G. K. P. Lei, W. Tong, and C. Shu,
“Photonic crystal fiber based Mach-Zehnder
interferometer for DPSK signal demodulation.”
Opt. Express, vol. 18, pp. 7917–7922, 2010.
[6] Dennis, W. P., J. Murakowski, S. Shi, S.
Venkataraman, A. Sharkway, C. Chen, and D.
Pustai, “High-efficiency coupling structure for a
single-line-defect photonic-crystal waveguide,”
Opt. Lett., vol. 27, pp. 1601–1603, 2002.
[7] Fan, S. H., P. R. Villeneuve., J. D. Joannopoulos,
and H. A. Haus, “Channel drop filters in photonic
crystals.” Opt. Express, vol. 3, pp. 4–11, 1998.
[8] Han, Y. G., G. Kim, K. Lee, S. B. Lee, C. H. Jeong,
C. H. Oh, and H. J. Kang, “Bending sensitivity of
long-period fiber gratings inscribed in holey fibers
depending on an axial rotation angle,” Opt.
Express, vol. 15, pp. 12866–12871, 2007.
[9] Hansen, T. P., J. Broeng, E. B. Libori, E. Knudsen,
A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly
birefringent index-guiding photonic crystal fibers,”
IEEE Photon. Technol. Lett., vol. 13, pp. 588–590,
2001.
[10]Jackson, D. A., and J. D. C. Jones,
Interferometers, in Optical Fiber Sensors: Systems
and Applications, pp. 239–280, Artech House,
Norwood, Mass, USA, 1989.
[11]Jha, R., J. Villatoro, G. Badenes, and V. Pruneri,
“Refractometry based on a photonic crystal fiber
interferometer,” Opt. Lett., vol. 34 pp. 617–619,
2009.
[12]John, S., “Strong localization of photons in certain
disordered dielectric superlattices,” Phys. Rev.
Lett., vol. 58, pp. 2486–2489, 1987.
[13]Jones, J. D. C. , Interferometry and polarimetry for
optical sensing, in Handbook of Optical Fibre
Sensing Technology, pp. 227–245, John Wiley &
Sons, West Sussex, UK, 2002.
[14]Kim, B., T. H. Kim, L. Cui, and Y. Chung,
“Twin core photonic crystal fiber for in-line Mach-
Zehnder interferometric sensing applications.”
Opt. Express, vol. 18, pp. 15502–15507, 2009.
[15]Knight, J. C., T. A. Birks, P. St. Russel, and D. M.
Atkin, “All-silica single-mode optical fiber with
photonic crystal cladding,” Opt. Lett., vol. 21, pp.
1547–1549, 1996.
[16]Knight, J. C., T. A. Birks, R. F. Cregan, P. St. J.
Russell, and J. P. Sandro, “Large mode area
photonic crystal fibre,” IEEE Electron Lett., vol. 34,
pp. 1347–1348, 1998.
[17]Larsen, T., A. Bjarklev, D. Hermann, and J. Broeng,
“Optical devices based on liquid crystal photonic
bandgap fibres,” Opt. Express, vol. 11, pp. 2589–
2596, 2003.
[18]Li, E., X. Wang, and C. Zhang,
“Fiber-optic temperature sensor based on
interference of selective higher-order modes,”
Appl. Phys. Lett., vol. 89, pp. 091119–1–091119–
3, 2006.
[19]Li, E., and G. D. Peng,
“Wavelength-encoded fiber-optic temperature
sensor with ultra-high sensitivity,” Opt. Commun.,
vol. 281, pp. 5768–5770, 2008.
[20]Li, Y., and L. Tong,
“Mach–Zehnder interferometers assembled with
optical microfibers or nanofibers.” Opt. Lett., vol.
33, pp. 303–305, 2008.
[21]Lim, J. H., H. S. Jang, and K. S. Lee,
“Mach–Zehnder interferometer formed in a
photonic crystal fiber based on a pair of long-
period fiber gratings,” Opt. Lett., vol. 29, pp. 346–
348, 2004.
[22]Macpherson, W. N., M. J. Gander, R. Mcbride, J. D.
C. Jones, P. M. Blanchard, J. G. Burnett, A. H.
Greenway, B. Mangan, T. A. Birks, J. C. Knight, P.
St. J. Russell, “Remotely addressed optical fibre
curvature sensor using multicore photonic crystal
fibre,” Opt. Commun., vol. 193, pp. 97–104, 2001.
[23]Malacara, D., M. Servin, and Z. Malacara,
Interferogram analysis for optical testing, New
York, Taylor & Francis Group, 2005
[24]Mogilevtsev, D., T. A. Birks, and P. St. J. Russell,
“Group-velocity dispersion in photonic crystal
fibers,” Opt. Lett., vol. 23, pp. 1662–1664, 1998.
[25]Monzón-Hernández, D., and J. Villatoro,
“High-resolution refractive index sensing by
means of a multiple-peak surface plasmon
resonance optical fiber sensor,” Sensors and
Actuators B, vol. 13, pp. 227–231, 2006.
[26]Ozcan, A., A. Tewary, M. J. F. Digonnet, and G. S.
Kino, “Observation of mode coupling in bitapered
air-core photonic bandgap fibers,” Opt. Commun.
vol. 271, pp. 391–395, 2007.
[27]Renversez, G., B. Kuhlmey, and R. McPhedran.
“Dispersion management with microstructured
optical fibers: ultraflattened chromatic dispersion
with low losses,” Opt. Lett., vol. 28, pp. 989–991,
2003.
[28]Tanabe, T., K. Nishiguchi, A. Shinya, E.
Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T.
Tsuchizawa, T. Watanabe, H. Fukuda, H.
Shinojima, and S. Itabashi, “Fast all-optical
switching using ion-implanted silicon photonic
crystal nanocavities,” Appl. Phys. Lett., vol. 90, pp.
1063–1066, 2007.
[29]Vaughan, J. M., The Fabry-Perot interferometer:
history, theory, practice, and applications. New
York, Taylor & Francis Group, 1989.
[30]Villatoro, J., V. Finazzi, V. P. Minkovich, V. Pruneri,
and G. Badenes, “Temperature-insensitive
photonic crystal fiber interferometer for absolute
strain sensing,” Appl. Phys. Lett., vol. 91, pp.
091109–1–091109–3, 2007.
[31]Villatoro, J., V. Finazzi, G. Badenes, and V. Pruneri,
“Highly Sensitive Sensors based on photonic
crystal fiber modal interferometers,” J. Sensors,
vol. 2009, pp. 747803, 2009.
[32]Weihs, G., R. Michael, H. Weinfurter, and A.
Zeilinger, “All-fiber three-path Mach–Zehnder
interferometer,” Opt. Lett., vol. 21, pp. 302–304,
1996.
[33]Yablonovitch, E., “Inhibited spontaneous emission
in solid-state physics electronics,” Phys. Rev.
Lett., vol. 58, pp. 2059–2062, 1987.
[34]Yablonovitch, E., T. J. Gmitter, R. D. Meade, A. M.
Rappe, K. D. Brommer, and J. D. Joannopoulos,
“Donor and acceptor modes in photonic band
structure,” Phys. Rev. Lett., vol. 67, pp. 3380–3383,
1991.
[35]Zoorob, M. E., M. D. B. Charlton, G. J. Parker, J. J.
Baumberg, and M. C. Netti, “Complete photonic
bandgaps in 12-fold symmetric quasicrystals,”
Nature, vol. 404, pp. 740–743, 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.171.12
論文開放下載的時間是 校外不公開

Your IP address is 18.223.171.12
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code