Responsive image
博碩士論文 etd-0728111-132512 詳細資訊
Title page for etd-0728111-132512
論文名稱
Title
奈米碳管的製程與其導電性的關係
The correlation between the conductivity of the carbon nanotubes and its growth process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-26
繳交日期
Date of Submission
2011-07-28
關鍵字
Keywords
循環伏安法、碳黑、熱裂解化學氣相沉積法、無金屬、奈米碳管
Carbon black, TCVD, Metal-free, CNTs, Cyclic Voltammetry
統計
Statistics
本論文已被瀏覽 5704 次,被下載 12
The thesis/dissertation has been browsed 5704 times, has been downloaded 12 times.
中文摘要
本研究使用熱裂解化學氣相沉積法 ( Thermal Chemical Vapor Deposition )以非金屬催化的方式在碳煙(N550)上生成奈米碳管,藉此提升了碳煙之電性,預期能夠作為優良的導電碳材。將碳煙N550基材藉由氧化及酸化改質表面以增加活性位置並經由熱處理過程清除汙染物和提高基材穩定性,接著在不同溫度下通入定比例碳源混合氣體經由高溫裂解碳源沉積於基材上之活性位置,同時生長出奈米碳管。利用掃描電子顯微鏡、穿透式電子顯微鏡以及拉曼光譜儀觀測其形貌、結構、長度、管徑,以及石墨化程度;由熱重分析儀量測熱處理過程對基材穩定性的影響以及氧化速率;再以循環伏安法 (Cyclic Voltammetry ) 測定含碳管基材的導電性質,求得異相電子傳遞速率常數 (K0)。藉由此方法來說明修飾導電碳煙的電子傳遞速率,並且比較在不同生長變因下其結構特性對導電性的影響。N550碳煙經過奈米態管生長處理後,其導電性能提升至原本的5倍。
Abstract
none
目次 Table of Contents
國立中山大學研究生學位論文審定書 I
誌 謝 II
摘 要 III
目 錄 IV
圖目錄 VII
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 奈米碳管生長機制 1
1.2.1 金屬催化生長奈米碳管 1
1.2.2. 非金屬催化生長奈米碳管 7
1.3 研究目的 7
1.4 電化學分析方法 8
NERNSTIAN (REVERSIBLE) SYSTEMS 【31】 10
TOTALLY IRREVERSIBLE SYSTEMS 【31】 15
QUASIREVERSIBLE SYSTEMS 【31】 16
1.5 化學氣相沉積法【33】 22
第二章 研究方法 24
2.1 實驗樣品 24
2.1.1 實驗氣體 24
2.1.2 實驗藥品 24
2.2 實驗裝置 25
2.3 實驗方法 30
2.3.1. 化學氣相沉積法 ( Chemical Vapor Deposition,CVD ) 30
2.3.2. 循環伏安法電化學測量 ( Cyclic Voltammetry,CV ) 31
2.4 量測儀器 33
2.4.1. 比表面分析儀 (Brunauer, Emmett, 與Tellerz,BET) 33
2.4.2. 熱重分析儀 (Thermo-gravimetric Analyzer,TGA) 33
2.4.3. 場效式電子顯微鏡 (Field-Emission scanning electron Microscopy,FE-SEM;機型:JEOL JSM-6700F) 34
2.4.4. 拉曼光譜儀 (Raman microscopy,廠牌及型號:HORIBA HR800) 35
2.4.5. 穿透式掃描電子顯微鏡 (HR-Transmission Electron Microscopy,TEM,型號 JEOL 2010F FasTEM,0.19nm for UHR) 36
2.4.6. 電化學分析器(型號: CHI611C) 36
第三章 結果與討論 37
3.1 N550碳煙前處理的基材特性 37
3.1.1 不同前處理基材對比表面積的影響 37
3.1.2 前處理後基材對氧化穩定性的影響 38
3.1.3 不同酸濃度對N550碳煙結構的影響 39
3.1.4 不同熱處理時間對碳煙結構和比表面積的影響 41
3.1.5 不同載氣熱處理對碳煙結構的影響 43
3.1.6 不同熱處理溫度對碳煙結構的影響 45
3.1.7 N550高溫氧化前處理基材對比表面積影響及氧化速率的控制 48
3.1.8 預測不同碳源比例的產物有碳奈米管的生長 50
3.1.9 比較不同反應溫度及不同碳源比例生長條件下的產物與氧氣的反應性 52
3.2 不同製程之含奈米碳管的碳煙導電性測量及拉曼結果 53
3.2.1 玻璃碳電極空白測試 53
3.2.2 不同前處理對電性影響 58
3.2.3 不同酸化濃度(1M-11M)對電性的影響 61
3.2.4 不同熱處理時間對電性影響 64
3.2.5 不同升溫速率(1℃/min-30℃/min)對電性的影響 66
3.2.6 (酸化處理)反應時間對電性影響 68
3.2.7 (氧化處理)反應時間對電性影響 70
3.2.8 氧化與酸化處理基材對電性的比較 72
3.2.9 700℃不同氧化時間對電性的影響 74
3.2.10 750℃不同氧化時間對電性的影響 77
3.2.11 不同氧化溫度(700℃ v.s 750℃) 在相同氧化時間的趨勢 80
3.2.12 氧化溫度(675-750 ℃)對電性的影響實驗反應條件 82
3.2.13 不同氧化溫度(750-900 ℃)對電性的影響 85
3.2.14 不同載氣對電性的影響實驗反應條件 88
3.2.15 不同反應溫度 ( 700-900 ℃) 對電性的影響 90
第四章 結論 94
參考文獻 95
參考文獻 References
1. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354 (6348), 56-58.
2. Dresselhaus, M. S.; Dresselhaus, G.; Charlier, J. C.; Hernández, E., Electronic, thermal and mechanical properties of carbon nanotubes. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 2004, 362 (1823), 2065-2098.
3. Wagner, R. S.; Ellis, W. C., VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH. Appl. Phys. Lett. 1964, 4 (5), 89-90.
4. Baker, R. T. K.; Barber, M. A.; Harris, P. S.; Feates, F. S.; Waite, R. J., Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 1972, 26 (1), 51-62.
5. Baker, R. T. K.; Waite, R. J., Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene. J. Catal. 1975, 37 (1), 101-105.
6. Sinnott, S. B.; Andrews, R.; Qian, D.; Rao, A. M.; Mao, Z.; Dickey, E. C.; Derbyshire, F., Model of carbon nanotube growth through chemical vapor deposition. Chem. Phys. Lett. 1999, 315 (1-2), 25-30.
7. Tibbetts, G. G., Why are carbon filaments tubular? J. Cryst. Growth 1984, 66 (3), 632-638.
8. Wagner, R. S.; Ellis, W. C., The vapor-Liquid-Solid Mechanism of Crystal Growth and Its Application to Silicon. Transactions of the Metallurgical Society of AIME 1965, 233, 1965-1053.
9. Moisala, A.; Nasibulin, A. G.; Kauppinen, E. I., The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes. J. Phys. Condens. Mater. 2003, 15, S3011-S3035.
10. Ding, F.; Bolton, K.; Rosén, A., Nucleation and Growth of Single-Walled Carbon Nanotubes: A Molecular Dynamics Study. The Journal of Physical Chemistry B 2004, 108 (45), 17369-17377; Harutyunyan, A. R.; Tokune, T.; Mora, E., Liquid as a required catalyst phase for carbon single-walled nanotube growth. Appl. Phys. Lett. 2005, 87 (5), 051919.
11. Ding, F.; Bolton, K.; Rosen, A., Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients. Computational Materials Science 2006, 35 (3), 243-246.
12. Oberlin, A.; Endo, M.; Koyama, T., Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 1976, 32 (3), 335-349.
13. Baird, T.; Fryer, J. R.; Grant, B., Structure of Fibrous Carbon. Nature 1971, 233 (5318), 329-330; Baird, T.; Fryer, J. R.; Grant, B., Carbon formation on iron and nickel foils by hydrocarbon pyrolysis—reactions at 700°C. Carbon 1974, 12, 591.
14. Helveg, S.; Lopez-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Norskov, J. K., Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427 (6973), 426-429.
15. Takagi, D.; Homma, Y.; Hibino, H.; Suzuki, S.; Kobayashi, Y., single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett. 2006, 6, 2642-2645; Zhou, W.; Han, Z.; Wang, J.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y.; Yan, C.; Li, Y., Copper Catalyzing Growth of Single-Walled Carbon Nanotubes on Substrates. Nano Lett. 2006, 6 (12), 2987-2990; Bhaviripudi, S.; Mile, E.; Steiner, S. A.; Zare, A. T.; Dresselhaus, M. S.; Belcher, A. M.; Kong, J., CVD Synthesis of Single-Walled Carbon Nanotubes from Gold Nanoparticle Catalysts. J. Am. Chem. Soc. 2007, 129 (6), 1516-1517; Yuan, D.; Ding, L.; Chu, H.; Feng, Y.; McNicholas, T. P.; Liu, J., Horizontally Aligned Single-Walled Carbon Nanotube on Quartz from a Large Variety of Metal Catalysts. Nano Lett. 2008, 8 (8), 2576-2579.
16. Raty, J.-Y.; Gygi, F.; Galli, G., Growth of Carbon Nanotubes on Metal Nanoparticles: A Microscopic Mechanism from Ab Initio Molecular Dynamics Simulations. Phys. Rev. Lett. 2005, 95 (9), 096103(4).
17. Hofmann, S.; Sharma, R.; Ducati, C.; Du, G.; Mattevi, C.; Cepek, C.; Cantoro, M.; Pisana, S.; Parvez, A.; Cervantes-Sodi, F.; Ferrari, A. C.; Dunin-Borkowski, R.; Lizzit, S.; Petaccia, L.; Goldoni, A.; Robertson, J., In situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation. Nano Lett. 2007, 7 (3), 602-608.
18. Ohta, Y.; Okamoto, Y.; Page, A. J.; Irle, S.; Morokuma, K., Quantum Chemical Molecular Dynamics Simulation of Single-Walled Carbon Nanotube Cap Nucleation on an Iron Particle. ACS Nano 2009, 3 (11), 3413-3420.
19. Takagi, D.; Hibino, H.; Suzuki, S.; Kobayashi, Y.; Homma, Y., Carbon Nanotube Growth from Semiconductor Nanoparticles. Nano Lett. 2007, 7 (8), 2272-2275.
20. Huang, S.; Cai, Q.; Chen, J.; Qian, Y.; Zhang, L., Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J. Am. Chem. Soc. 2009, 131 (6), 2094-2095.
21. Liu, B.; Ren, W.; Liu, C.; Sun, C. H.; Gao, L.; Li, S.; Jiang, C.; Cheng, H. M., Growth velocity and direct length-sorted growth of short single-walled carbon nanotubes by a metal-catalyst-free chemical vapor deposition process. ACS Nano 2009, 3 (11), 3421-3430.
22. Gulino, G.; Vieira, R.; Amadou, J.; Nguyen, P.; Ledoux, M. J.; Galvagno, S.; Centi, G.; Pham-Huu, C., C2H6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapour deposition. Applied Catalysis A: General 2005, 279 (1-2), 89-97; Young Lee, T.; Han, J.-H.; Hong Choi, S.; Yoo, J.-B.; Park, C.-Y.; Jung, T.; Yu, S.; Yi, W. K.; Han, I. T.; Kim, J. M., Effects of source gases on the growth of carbon nanotubes. Diamond Relat. Mater. 2003, 12 (3-7), 851-855.
23. Bandow, S.; Asaka, S.; Saito, Y.; Rao, A. M.; Grigorian, L.; Richter, E.; Eklund, P. C., Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes. Phys. Rev. Lett. 1998, 80 (17), 3779(4); Chai, S.-P.; Sivakumar, V. M.; Zein, S. H. S.; Mohamed, A. R., The examination of NiO and CoOx catalysts supported on Al2O3 and SiO2 for carbon nanotubes production by catalytic chemical vapor deposition of methane. Carbon : Science and Technology 2008, 1 (1), 24-29; Sengupta, J.; Jacob, C., Growth temperature dependence of partially Fe filled MWCNT using chemical vapor deposition. J. Cryst. Growth 2009, 311 (23-24), 4692-4697; Lee, C. J.; Park, J.; Huh, Y.; Yong Lee, J., Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 2001, 343 (1-2), 33-38; Ducati, C.; Alexandrou, I.; Chhowalla, M.; Amaratunga, G. A. J.; Robertson, J., Temperature selective growth of carbon nanotubes by chemical vapor deposition. J. Appl. Phys. 2002, 92 (6), 3299-3033.
24. Li, W.; Wen, J.; Tu, Y.; Ren, Z., Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition. Applied Physics A: Materials Science & Processing 2001, 73 (2), 259-264.
25. Lin, J.; Chen, C.; Ma, H.; Hsu, C.; Chen, H., Synthesis of MWCNTs on CuSO4/Al2O3 using chemical vapor deposition from methane. Carbon 2007, 45 (1), 223-225.
26. Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Arenillas, A.; Domínguez, A.; Pis, J. J.; Menéndez, J. A., Growth of nanofilaments on carbon-based materials from microwave-assisted decomposition of CH4. Appl. Surf. Sci. 2008, 254 (11), 3553-3557; Ohashi, F.; Chen, G. Y.; Stolojan, V.; Silva, S. R. P., The role of the gas species on the formation of carbon nanotubes during thermal chemical vapour deposition. Nanotechnology 2008, 19 (44), 445605.
27. Ding, L.; Zhou, W.; McNicholas, T. P.; Wang, J.; Chu, H.; Li, Y.; Liu, J., Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Research 2009, 2 (11), 903-910.
28. Lin, J. H.; Chen, C. S.; Rümmeli, M. H.; Bachmatiuk, A.; Zeng, Z. Y.; Ma, H. L.; Büchner, B.; Chen, H. W., Growth of Carbon Nanotubes Catalyzed by Defect-Rich Graphite Surfaces. Chem. Mater. 2011, 23 (7), 1637-1639.
29. Dumitrescu, I.; Unwin, P. R.; Macpherson, J. V., Electrochemistry at carbon nanotubes: perspective and issues. Chem. Commun. 2009, (45), 6886-6901; Campbell, J. K.; Sun, L.; Crooks, R. M., Electrochemistry Using Single Carbon Nanotubes. J. Am. Chem. Soc. 1999, 121 (15), 3779-3780; Nugent, J. M.; Santhanam, K. S. V.; Rubio, A.; Ajayan, P. M., Fast Electron Transfer Kinetics on Multiwalled Carbon Nanotube Microbundle Electrodes. Nano Lett. 2001, 1 (2), 87-91.
30. Nicholson, R. S., Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37 (11), 1351-1355.
31. Bard, A. J.; Faulkner, L. R., ELECTROCHEMICAL METHODS: Fundamentals and Applications. Wiley, New York 2001.
32. Matsuda, H.; Ayabe, Y., The classify of the reversibility for the voltammetric experiments. Z. Electrochem 1955, 59, 494-499.
33. Moisala, A.; Nasibulin, A. G.; Kauppinen, E. I., The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes¡Xa review. J. Phys.: Condens. Matter 2003, 15, S3011.
34. Jose Yacaman, M.; Miki Yoshida, M.; Rendon, L.; Santiesteban, J., Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett. 1993, 62 (2), 202-204.
35. Zhu, H.; Li, X.; Xu, C.; Wu, D., Co-synthesis of single-walled carbon nanotubes and carbon fibers. Mater. Res. Bull. 2002, 37 (1), 177-183.
36. Ren, W.; Li, F.; Chen, J.; Bai, S.; Cheng, H. M., Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane. Chem. Phys. Lett. 2002, 359 (3-4), 196-202.
37. Li, Q.; Yan, H.; Zhang, J.; Liu, Z., Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition. Carbon 2004, 42 (4), 829-835.
38. Gajendran, P.; Saraswathi, R., Enhanced electrochemical growth and redox characteristics of poly (o-phenylenediamine) on a carbon nanotube modified glassy carbon electrode and its application in the electrocatalytic reduction of oxygen. The Journal of Physical Chemistry C 2007, 111 (30), 11320-11328.
39. Winkler, K., The kinetics of electron transfer in Fe(CN)64-/3- redox system on platinum standard-size and ultramicroelectrodes. J. Electroanal. Chem. 1995, 388 (1-2), 151-159.
40. Okita, A.; Suda, Y.; Oda, A.; Nakamura, J.; Ozeki, A.; Bhattacharyya, K.; Sugawara, H.; Sakai, Y., Effects of hydrogen on carbon nanotube formation in CH4/H2 plasmas. Carbon 2007, 45 (7), 1518-1526; Zhang, G.; Mann, D.; Zhang, L.; Javey, A.; Li, Y.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J., Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (45), 16141-16145.
41. Yu, H.; Zhang, Q.; Wang, Q.; Ning, G.; Luo, G.; Wei, F., Effect of the reaction atmosphere on the diameter of single-walled carbon nanotubes produced by chemical vapor deposition. Carbon 2006, 44 (9), 1706-1712.
42. Malek Abbaslou, R. M.; Soltan, J.; Dalai, A. K., The effects of carbon concentration in the precursor gas on the quality and quantity of carbon nanotubes synthesized by CVD method. Applied Catalysis A: General 2010, 372 (2), 147-152.
43. Banks, C. E.; Compton, R. G., New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. Analyst 2006, 131 (1), 15-21.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.109.5
論文開放下載的時間是 校外不公開

Your IP address is 3.144.109.5
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code