Responsive image
博碩士論文 etd-0728111-160706 詳細資訊
Title page for etd-0728111-160706
論文名稱
Title
利用不同極性衍生物調控聚胜肽之二級結構
Using Different Specific Interactions Meditated Secondary Structure of Polypeptides
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-22
繳交日期
Date of Submission
2011-07-28
關鍵字
Keywords
不同極性的高分子、混摻、酚醛樹酯、聚谷氨酸
specific interactions, blended, poly(glutamate)s, phenolic resin
統計
Statistics
本論文已被瀏覽 5640 次,被下載 0
The thesis/dissertation has been browsed 5640 times, has been downloaded 0 times.
中文摘要
本研究著要包含了兩個主題,第一個主題是利用三種低分子量的聚谷氨酸poly( γ-methyl l-glutamate)(PMLG)、poly( γ-ethyl l-glutamate) (PELG)與poly( γ-benzyl l-glutamate) (PBLG)以開環聚合(ring-opening polymerization)的方式,聚合出帶有聚合度(degree of polymerization, DP)≦18且同時擁有α-螺旋及β-褶板之胜肽鏈,藉由混摻不同比例的酚醛樹酯(phenolic resin)及在溫度的改變之下,二級結構其構形的改變及趨勢。透過微分掃瞄卡計(DSC)觀察到三種系統都是單一個玻璃轉移溫度(glass transition temperature,Tg),系統呈現完全相溶性,透過Painter–Coleman association模型決定接受氫鍵的大小有關的相互作用平衡常數以及室溫下傅立葉轉換光譜儀(FTIR),可以觀察到受氫鍵作用的強度為phenolic/PELG > phenolic/PMLG > phenolic/PBLG,利用室溫FT-IR與固態13C核磁共振分析(SSNMR)主要觀察二級結構主要有兩個現象:在室溫下混摻酚醛樹酯時,隨著比例增加PMLG、PELG二級結構的α-螺旋分率會隨著酚醛樹酯的量增加先有減少之後增加的現象。而PBLG的α-螺旋分率則是連續的增加;接著利用可變溫FT-IR觀察溫度變化下三種混摻系統二級結構的改變。我們觀察到聚胜肽二級結構會受到1.聚胜肽側鏈長度與硬度2.酚醛樹酯的含量3.溫度影響而有所變化,有趣的,PBLG/phenolic系統在溫度增加的情況下α-螺旋分率會連續的增加,這明顯的與另外兩組系統不同。
第二個主題是利用低分子量的PBLG以開環聚合的方式聚合出帶有α-螺旋及β-褶板(DP≦18)之胜肽鏈,藉由混摻不同極性的高分子聚苯乙烯(polystyrene,PS)、聚4-乙酰氧基苯乙烯(poly acetoxystyrene,PAS)以及聚乙烯基苯酚(poly vinyl phenol,PVPh)及在溫度的改變之下,二級結構其構形的改變及趨勢。觀察三種不同系統可以發現每一種系統受到的作用力不同,而二級結構所受到的影響程度與系統相溶性(miscibility)也不同,在PVPh/PBLG系統與PAS/PBLG系統中分別是受到氫鍵作用力與偶極-偶極作用力(dipole-dipole)從DSC熱性質分析儀中可以觀察到為單一玻璃轉移溫度相溶性系統,最後PS/PBLG系統則是受到π-π交互作用力的影響,由於作用力小,所以呈現為不相溶(immiscible)系統。
本研究之檢測是利用氫核磁共振光譜儀( 1H-NMR) 、傅立葉轉換光譜儀(FTIR)、微差式掃描熱卡儀(DSC)、廣角的X射線繞射光譜(WXRD)做二級結構的變化與定量分析。
Abstract
We have two topics, In the first study, we synthesized three low-molecular-weight poly(glutamate)s—poly( γ-methyl l-glutamate) (PMLG), poly( γ-ethyl l-glutamate) (PELG), and poly( γ-benzyl l-glutamate) (PBLG)—through living ring-opening polymerization of their α-amino acid-N-carboxyanhydride derivatives and then blended them with phenolic resin to control the secondary structures of these polypeptides. Each of the three binary blends exhibited a single glass transition temperature (differential scanning calorimetry) and solid state nuclear magnetic resonance (NMR) spectroscopy], characteristic of a miscible system. The strength of the inter-associative interactions depended on the nature of the hydrogen bond acceptor groups, increasing in the order phenolic/PELG > phenolic/PMLG > phenolic/PBLG, as evidenced through analyses using Fourier transform infrared (FTIR) spectroscopy and the Painter–Coleman association model. The fractions of α-helical conformations (measured using FTIR and solid state NMR spectroscopy) of PMLG and PELG decreased initially upon increasing the phenolic content, but increased thereafter; in contrast, the fraction of α-helical conformations of PBLG increased continuously upon increasing the phenolic contents. Using variable-temperature infrared spectroscopy to investigate the changes in the conformations of the secondary structures of the peptide segments in these three binary blends, we found that the α-helical conformation in these three blend systems correlated strongly with the rigidity of side chain groups, the strength of the intermolecular hydrogen bonding with the phenolic resin, the compositions of phenolic resin, and the temperature. More interestingly, the content of α-helical conformations of the polypeptides in these phenolic/PBLG blends increased upon increasing the temperature.
The second topic is synthesized low-molecular-weight poly( γ-benzyl l-glutamate) (PBLG) through living ring-opening polymerization of their α-amino acid-N-carboxyanhydride derivatives and blended them with poly( styrene)(PS), poly (acetoxystyrene) (PAS) and poly(vinyl phenol) (PVPh) to control the secondary structures of these polypeptides. DSC have been used to investigate the miscibility of. FTIR spectroscopies and wide-angle X-ray diffraction (WXRD) spectroscopic analyses provided evidence for the change and specific interactions between (PS, PAS and PVPh) and PBLG. That the secondary structures of polypeptides can be altered through blending with other different Specific Interactions, mediated by hydrogen bonding, dipole–dipole, and π—π Interaction, we investigate strong Specific interactions was found between the side-chain esters of PAS, PVPh, but not found between PBLG and PS, because more weakly with the aromatic rings of PS through intermolecular π—π interactions, so that this latter system is phase separated.
目次 Table of Contents
誌謝.............................................................................................................I
中文摘要...................................................................................................II
英文摘要..................................................................................................IV
目錄.........................................................................................................VII
表目錄......................................................................................................XI
圖目錄.....................................................................................................XII
第一章 緒論 1
1-1前言 1
1-2研究動機及目的 4
第二章 利用酚醛樹酯調控聚胜肽二級結構 8
2-1 理論及文獻回顧 8
2-1-1 氫鍵作用力概說 8
2-1-2 氫鍵摻合系統原理 ………………………………………9
2-1-3 混摻原理摻…………………………………………..........10
2-2 實驗方法與步驟………………………………………………...12
2-2-1 實驗室藥品 …….12
2-2-2 實驗流程…………………………………………………..13
2-2-3 合成方法.. 15
2-2-3-1 γ-谷氨酸苄酯-NCA(N-carboxyanhydride)的合成…..15
2-2-3-2聚谷氨酸苄酯的合成(synthesis of poly g1utamates)…16
2-2-3-3酚醛樹酯的合成(synthesis of phenolic resin) ………...16
2-2-3-4高分子混摻(polymer blend) 17
2-2-4儀器使用 18
2-2-4-1氫核磁共振光譜儀(Proton Nuclear Resonance
Spectrometer 1H-NMR) 型號: Varian® Unity Inova-500。…...18
2-2-4-2傅利葉轉換紅外線光譜儀(Fourier Transform Infrared
Spectrometer,FT-IR) 型號: 型號﹕Bruker Tensor-27………..19
2-2-4-3微差掃描卡計(Differential Scanning Calorimeter,
DSC)…………………………………………………………..20
2-2-4-4固態核磁共振儀(Solid State Nuclear Magnetic
Resonance Spectro) 型號:BRUKER DSX¬-400WB………..21
2-3 結果與討論……………………………………………………...22
2-3-1 實驗室藥品………………………………………………...22
2-3-2 (PMLG、PELG與PBLG)/Phenolic混摻熱性分析……. …28
2-3-3 (PMLG、PELG與PBLG)/ Phenolic FTIR分析…………….30
2-3-4 PBLG/ Phenolic 13C固態NMR光譜……………………….39
2-3-5 (PMLG、PELG與PBLG)/Phenolic變溫-FTIR分析……….44

2-4結論 47
第三章 混摻不同極性高分子對PBLG二級結構的影響 48
3-1前言 48
3-2原理與文獻顧 51
3-2-1 苯的軌域重疊模型 51
3-2-2 原子轉移自由基聚合法 52
3-3實驗方法與步驟 54
3-3-1 實驗流程 54
3-3-2 實驗藥品 56
3-3-3 合成方法 ……………………………………………………57
3-3-3-1乙炔基聚[L-谷氨酸-5-苄酯]的合成………………….57
3-3-3-2 polymer (4-acetoxystyrene) Polymerization………..57
3-3-3-3 PVPh的合成………………………………………..58
3-3-3-4 高分子混摻(Polymer Blend)………………………...58
3-4 使用儀器 59
3-5 結果與討論 60
3-5-1 PAS、PVPh合成鑑定 ……………………………………..60
3-5-2(PVPh、PAS、PS)/PBLG混摻熱性質分析………………….62
3-5-3(PVPh、PAS、PS)/PBLG混摻FTIR分析...............................63
3-5-4(PS、PAS與PVPh)/PBLG混摻 WAXD分析.....................70
3-6結論 71
參考文獻 72
參考文獻 References
1. Klok, H. A.; Lecommandoux, S. Adv. Mater. 2001, 13, 1217.
2. Eisenberg, D. PNAS. 2003, 100, 11207.
3. Flory, P. J. Proc. R. Soc. London Ser. A 1956, 234, 73.
4. Yang, J. T.; Doty, P. J. Am. Chem. Soc. 1957, 79, 761.
5. Perutz, M. F. Nature 1951, 167, 1053.
6. Robinson, C.; Ward, J. C. Nature 1957, 180, 1183.
7. Yu, S. M.; Conticello, V. P.; Zhang, G.; Kayser, C.; Fournier, M. J.; Mason, T. L.; Tirrell, D. A. Nature 1997, 389, 167.
8. Tohyama, K.; Miller,W. G. Nature 1981, 289, 813.
9. Prystupa, D. A.; Donald, A. M. Macromolecules 1993, 26, 1947.
10. Kuo, S. W.; Lee, H. F.; Chang, F. C. J. Polym. Sci. Polym. Chem. 2008, 46, 3108.
11. Blondelle, S. E.; Forood, B.; Houghten, R. A.; Perez-Paya, E. Biochemistry 1997, 36, 8393.
12. Gitsas, A.; Floudas, G.; Mondeshki, M.; Spiess, H. W.; Aliferis, T.; Iatrou, H.;Hadjichristidis, N. Macromolecules 2008, 41, 8072.
13. Sanchez-Ferrer, A.; Mezzenga, R. Macromolecules 2010, 43, 1093.
14. Zhou, Q, H.; Zheng, J. K.; Shen, Z. H.; Fan, X, H.; Chen, X. F.; Zhou, Q. F. Macromolecules 2010, 43, 5367.
15. Lee, H. F.; Sheu, H. S.; Jeng, U. S.; Huang, C. F.; Chang, F. C. Macromolecules 2005, 38, 6551.
16. Papadopoulos, P.; Floudas, G.; Schnell, I.; Aliferis, T.; Iatrou, H.; Hadjichristidis, N. Biomacromolecules 2005, 6, 2352.
17. Rao, J.; Zhang, Y.; Zhang, J.; Liu, S. Biomacromolecules 2008, 9, 2586.
18. Ibarboure, E.; Papon, E.; Rodriguez-Hernandez, J. Polymer 2007, 48, 3717.
19. Ibarboure, E.; Rodriguez-Hernandez, J. J. Polym. Sci. Polym. Chem. 2006, 44, 4668.
20. Klok, H. A.; Langenwalter, J. F.; Lecommandoux, S. Macromolecules 2000, 33, 7819.
21. Lecommandoux, S.; Achard, M. F.; Langenwalter, J. F.; Klok, H. A. Macromolecules 2001, 34, 9100.
22. Crespo, J. S.; Lecommandoux, S.; Borsali, R. Klok, H. A.; Soldi, V. Macromolecules 2003, 36, 1253.
23. Papadopoulos, P.; Floudas, G.; Schnell, I.; Lieberwirth, I. Nguyen, T. Q.; Klok, H. A. Biomacromolecules 2006, 7, 618.
24. Klok, H. A.; Lecommandoux, S. Adv. Polym. Sci. 2006, 202, 75.
25. Floudas, G.; Papadopoulos, P.; Klok, H. A.; Vandermeulen, G. W. M.; Rodriguez-Hernandez, J. Macromolecules 2003, 36, 3673.
26. Ibarboure, E.; Papon, Z. E.; Rodriguez-Herna, J. Polymer 2007, 48, 3717.
27. Kang, I. K.; Ito, Y.; Sisido, M.; Imanishi, Y. Biomaterials 1988, 9, 349.
28. Hua, C.; Dong, C. M.; Wei, Y. Biomacromolecules 2009, 10, 1140.
29. Huang, C. J.; Chang, F. C. Macromolecules 2008, 41, 7041.
30. Perly, B.; Douy, A.; Gallot, B. Makromol. Chem. 1976, 177, 2569.
31. Nakajima, A.; Hayashi, T.; Kugo, K.; Shinoda, K. Macromolecules 1979, 12, 840.
32. Yoda, R.; Komatsuzaki, S.; Hayashi, T. Biomaterials 1995, 16, 1203.
33. Tomoya, H.; Rudolf, F. React. Fun. Polym. 2009, 69, 429.
34. Kong, X.; Jenekhe, S. A. Macromolecules 2004, 37, 8180.
35. Kuo, S. W.; Lee, H. F.; Huang, W. J.; Jeong, K. U. Chang, F. C. Macromolecules 2009, 42, 1619.
36. Kuo, S. W.; Tsai, H. T. Polymer 2010, 51, 5605.
37. Painter, P. C.; Tang, W. L.; Graf, J. F.; Thomson, B.; Colema, M. M. Macromolecules 1991, 24, 3929.
38. Asano, A.; Kurotu, T. J. Mol. Structure 1998, 441, 129.
39. Murata, K.; Katoh, E.; Kuroki, S.; Ando, I. J. Mol. Struct. 2004, 689, 223.
40. Deng, X.; Hao, J.; Yuan, M.; Xiong, C.; Zhao, S. Polym. Inter. 2001, 50, 37.
41. Aoi, K.; Nakamura, R.; Okada, M. Macromol. Chem. Phys. 2000, 201, 1059.

42. Deming, T, J. Adv. Mater. 1997, 9, 4.
43. Beatty, A. M. Cryst. Eng. Comm. 2001, 51, 1.
44. Barlow, J. W.; Paul, D. R. Polym. Eng. Sci. 1984, 24, 525.
45. Paul, D. R.; Newman, S. E. Academic. 1987, 14, 1.
46. Pielichowaski, K.; Niuguna, J.; Janowski, B.; Pielichowski, J. Adv. Polym. Sci. 2006 , 201, 225.
47. Lickiss, P. D.; Rataboul,F. Adv. Organmetal. Chem. 2008, 57, 1.
48. 張靜夏, 周永言, 黃愛東. 化學試劑, 2004, 26 , 105.
49. Ferruti ,P.;Ranucci, E.;Duncan, R. Macromol. Chem. Phys. 1999, 200, 1644.
50. Marrw, A.D.; Chun, L.; Dong, F. Cancer Res. 1998, 58, 2404 .
51. Choo, J.; Jeon, S.; Sohn, D.; Lee, S, N. Polymer. 2001, 42 , 9915.
52. Coleman, M. M.; Graf, J. F.; Painter, P. C. “Specific Interactions and the Miscibility of Polymer Blends”, Technomic Publishing, Lancaster, PA, (1991).
53. Huang, C. F.; Kuo, S. W.; Lin, F. J.; Huang, W. J.; Wang, C. F. Chen. W. Y.; Chang, F. C. Macromolecules 2006, 39, 300.
54. Kuo, S. W.; Chan, S. C.; Chang, F. C. Macromolecules 2003, 36, 6653.
55. Kuo, S. W.; Huang, C. F.; Chang, F. C. J. Polym. Sci.: Polym. Phys. 2001, 39, 1348.
56. Kuo, S. W. J. Polym. Res. 2008, 15, 459.
57. He, Y.; Zhu, B.; Inoue, Y. Prog. Polym. Sci. 2004, 29, 1021.
58. Coleman, M. M.; Painter, P. C. Prog. Polym. Sci. 1995, 20, 1.
59. Ma, C. C. M.; Wu, H. D.; Peter, P. C.; Han, T. T. Macromolecules 1997, 30, 5443.
60. Jeon, S.; Choo, J.; Sohn, D.; Lee, S. N. Polymer 2001, 42, 9915.
61. Kuo, S. W.; Chang, F. C. Macromolecules 2001, 34, 4089.
62. Kuo, S. W.; Chang, F. C. Macromolecules 2001, 34, 5224.
63. Kuo, S. W.; Tung, P. H.; Chang, F. C. Macromolecules 2006, 39, 9388.
64. Huang, M. W.; Kuo, S. W.; Wu, H. D.; Chang, F. C. Fang, S. Y. Polymer 2002, 43, 2479.
65. Hill, D. J. T.; Whittaker, A. K.; Wong, K. W. Macromolecules 1999, 32, 5285.
66. Coleman, M. M.; Painter P. C. “Miscible Polymer Blend-Background and Guide for Calculations and Design” DEStech Publications Inc 2006.
67. Kuo, S. W.; Chang, F. C. Macromolecules 2001, 34, 4089.
68. Kuo, S. W.; Huang, W. J.; Huang, C. F.; Chan, S. C.; Chang, F. C. Macromolecules 2004, 37, 4164.
69. Huang, H.; Hu, Y.; Zhang, J.; Sato, H.; Zhang, H.; Noda, I.; Ozaki, Y. J. Phys. Chem. B. 2005, 109, 19175.
70. He, Y.; Zhu, B.; Inoue Y. Prog. Polym. Sci. 2004, 29, 1021.
71. Jiang, M.; Mei, L.; Xiang, M.; Zhou, H. Adv. Polym. Sci. 1999, 146, 121.
72. Chen, D.; Jiang, M. Acc. Chem. Res. 2005, 38, 494.
73. Yi, J. Z.; Goh, S. H.; Wee, A. T. S. Macromolecules 2001, 34, 4662.
74. Chien, Y. Y.; Perace, E. M.; Kwei, T. K. Macromolecules 1988, 21, 1616.
75. Patten, T. E.; Matyjaszewski, K. Adv. Mat. 1998 , 12, 901.
76. Patten, T. E.; Matyjaszewski, K. Acc. Chem. Res. 1999 , 32, 895.
77. Gaoa, B.; Chena, X.; Ivana, B.; Kopsa, J.; Batsberg,W. Macromol. Rapid Commun. 1997, 18, 1095.
78. Huang, K. W.; Tsai, L. W.; Kuo, S. W. Polymer 2009, 50, 4876.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.5.239
論文開放下載的時間是 校外不公開

Your IP address is 18.191.5.239
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code