Responsive image
博碩士論文 etd-0728111-200743 詳細資訊
Title page for etd-0728111-200743
論文名稱
Title
合成孔徑聲納系統之研究—縱向解析度分析
The Study of Synthetic Aperture Sonar System: Analysis of Range Resolution
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-21
繳交日期
Date of Submission
2011-07-28
關鍵字
Keywords
合成孔徑聲納系統、縱向解析度、調變函數、脈衝壓縮處理、橫向解析度
along track resolution, pulse compression, range resolution, a synthetic aperture sonar system, taper function.
統計
Statistics
本論文已被瀏覽 5727 次,被下載 935
The thesis/dissertation has been browsed 5727 times, has been downloaded 935 times.
中文摘要
合成孔徑聲納(Synthetic Aperture Sonar, SAS)之基本原理乃是藉由陣列系統之運動,並經由信號處理的方式,以達提高目標物辨識能力之目的。合成孔徑應用於聲納系統上既可達到高解析度與長距離傳播的需求,因此成為重要的研發技術。SAS 基本觀念源自合成孔徑雷達(Synthetic Aperture Radar, SAR),惟在實務應用上仍然有諸多待克服的困難,如:操作平臺不平穩、環境的變異等。有關本實驗室在 SAS 之研究,先前宋(2010)已進行橫向(與操作平臺平行之方向)解析度之實驗與分析,並獲致良好的結果,惟在縱向(同聲波發射方向)解析度方面,仍有改進的空間,因此,本文將以縱向解析度分析為主題,進行實驗與分析。縱向解析基本上是藉由脈衝壓縮(pulse compression)的信號處理方式,將目標物在縱向方面的特性解析,以達辨識的目標,而其效能乃受到目標物性質、排列方式、頻寬、波型、脈衝長度等因素的影響。

本研究於中山大學無響水槽(4 m × 3.5 m × 2 m)進行實驗,以AST MK VI 192作為發射與接收器,量測多個大小不等之銅球目標物散射,並分析上述所提之各種因素對於縱向解析能力的影響。本研究進行雙體銅球散射場之分析,已現有儀器設備探討並獲致主要結果包括:(1)聲納所發射之脈衝長度與回波訊號有關且正好涵蓋整個物體之最短脈衝長度是2L/c;(2)SAS 實現低頻率又具高解析度的要求;(3)發射聲波 192 kHz 會有暫態現象產生,結果顯示將此訊號當一般訊號進行處理即可;(4)對於訊號頻寬為 20 kHz其縱向解析度為 7.5 cm。本實驗完成之後,擬於西子灣海洋實驗場進行實海域實驗,以期達到實物應用的目標。
Abstract
The basic principle in SAS is to use an array which is small in length to create a long synthetic array thus the better resolution is achieved through the use of signal processing. Additionally, the resolution that is independent of range and signal frequency, makes SAS a advantageous tool for applications. Although the origin of SAS comes from SAR, SAS still needs to overcome all constraints for real-world application. In a previous study by Sung and prof. Liu, published results of the along track resolution experiments which were well done however there was still much room in range resolution, the purpose of this research is to achieve high range resolution at any ranges. Indeed there are many existing factors affecting the capability of resolution which including characteristic of the target, certain arrangements of targets, bandwidth, waveforms and pulse duration and etc. High range resolution is obtained using pulse compression techniques.

The experiments were carried out using the transducers of AST MK VI 192 kHz which were employed to transmit and receive signals, scanned various copper balls at anechoic water tank(4 m × 3.5 m × 2 m) in NSYSU. From the equipment we have now results were evaluated based on both simulated and real data: for the range resolution the pulse length is very important the shortest pulse length on an object would be 2L/c theoretically, the measured range resolution is about 7.5 cm for the 20-kHz bandwidth signals and 5 cm for along track resolution. As all the experiments have been successful in the Water Tank, we intent to launch further investigation of this research to the real world application of SAS i.e. in Sizihwan Bay Marine Test Field.
目次 Table of Contents
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 研究主題與方法 4
1.4 論文範疇 5
第二章 合成孔徑聲納數值模擬 6
2.1 正側視條帶式合成孔徑聲納系統 6
2.2 SAS 參數設定與模擬結果 7
2.3 結語 25
第三章 實驗設計與資料處理 26
3.1 實驗目的 26
3.2 實驗儀器 26
3.2.1 資料處理程式 32
3.3 實驗方法 33
3.4 資料處理 37
3.4.1 解析度 37
3.4.2 取樣原理 39
3.4.3 快速傅立葉轉換 39
3.4.4 希爾伯特轉換 40
3.4.5 脈波長度對目標物回訊的影響 41
3.4.6 脈衝壓縮原理 42
3.4.7 資料取得 44
3.5 結語 48
第四章 縱向解析度分析 49
4.1 雙體目標物分析 49
4.1.1 脈波長度的影響 51
4.1.2 調變函數分析 54
4.1.3 變換操作頻率 57
4.1.4 縱向解析能力 63
4.2 佐證資料之正確性 67
4.3 模型目標物實驗 70
4.4 結語 74
第五章 結論與建議 75
5.1 結論 75
5.2 建議 76
參考文獻 References
[1] Sathishkumar, R., Vimalajuliet, A., and Rajapan, D., ``Seafloor Imaging via Synthetic Aperture Technology,' International J. of Recent Trends in Engineering, vol. 1, no. 3, May 2009.
[2] Walsh, G. A., ``Acoustic mapping apparatus,' United States Patent 3484737, 1969.
[3] Adams, A. E., Lawlor, M. A., Riyait, V. S., Hinton, O. R., and Sharif, B.S., ``Real-time synthetic aperture sonar processing system,' IEEE Proc.-Radar, Sonar Navig., vol. 143, no. 3, pp. 169-176, Jun. 1996.
[4] Sato, T., Ueda, M., and Fukoda, S., ``Synthetic Aperture Sonar," Journal of the Acoustical Society of America, vol. 54, no. 3, pp. 799-802, 1973.
[5] Cutrona, L. J., ``Comparison of sonar system performance achievable using synthetic-aperture techniques with the performance achievable by more conventional means,' J. Acoust. Soc. Amer., vol. 58, no. 2, pp. 336-348, Aug. 1975.
[6] Cutrona, L. J., ``Additional characteristics of synthetic-aperture sonar systems and a future comparison with nonsynthetic-aperture sonar systems,' J. Acoust. Soc. Am., vol. 61, no. 5, pp. 1213-1217, May 1977.
[7] Lee, H. E., ``Synthetic array processing for underwater mapping applications,' IEEE International Conference on Acoustics, Speech, and Signal Processing, IEEE, New York, pp. 148-151, 1978.
[8] Lee, H. E., ``Extension of Synthetic Aperture Radar (SAR) Techniques to Undersea Applications,' IEEE Journal of Oceanic Engineering, vol. 4, no. 2, pp. 60-63, April 1979.
[9] Loggins, C. D., Christoff, J. T., and Pipkin, E. L., ``Results from rail synthetic aperture experiments," J. Acoust. Soc. Amer., vol. 71, no. S1, pp. S85-S85, 1982.
[10] Gough, P. T., ``A synthetic aperture sonar system capable of operating at high speed and in a turbulent media,' IEEE Journal of Oceanic Engineering, vol. OE-11, no. 2, pp. 333-339, April 1986.
[11] Raney, R. K., Runge, H., Bamler, R., Cumming, I., and Wang, F., ``Precision SAR Processing Using Chirp Scaling,' IEEE Transactions on Geoscience and Remote Sensing, vol. 32, no. 4, pp. 786-799, July 1994.
[12] Lawlor, M. A, Adams, A. E., Hinton, O. R., Riyait, V. S., Sharif, B., ``Methods for Increasing the Azimuth Resolution and Mapping Rate of a Synthetic Aperture Sonar,' IEEE Oceans '94 Conference Proceedings, vol. 3, pp. 565-570, September 1994.
[13] Gough, P. T., and Hawkins, D. W.,``Imaging algorithms for a strip-map synthetic aperture sonar: Minimizing the effect of aperture errors and aperture undersampling,' IEEE J. of Oceanic Engineering, vol. 22, no. 1, pp. 27-39, Jan. 1997.
[14] Gough, P. T., and Hawkins, D. W., ``Unified Framework for Modern Synthetic Aperture Imaging Algorithms,' The International Journal of Imaging Systems and Technology, vol. 8, pp. 343-358, 1997.
[15] Bonifant, W. W., ``Interferometic synthetic aperture sonar processing," Master's thesis, Georgia Institute of Technology, 1999.
[16] Angela Putney, Enson Chang, Ralph, David Marx, Matt Nelson, L. Kieffer Warman, ``Synthetic aperture sonar-The method of underwater remote sensing,' IEEE Oceans Proceedings, volume 4, pp. 1749-1756, 2001.
[17] Hagen, P. E., Hansen, R. E., Gade, K., and Hammerstad E., ``Interferometric Synthetic Aperture Sonar for AUV Based Mine Hunting: The SENSOTEK project,' Proc. Unmanned Systems, USA, July-August, 2001.
[18] Lee, F. C., and Chen W. H., ``On the acoustic absorption of multi-layer absorbers with different inner structures,' J. of Sound and Vibration, 259, 761-777, 2003.
[19] Sternlicht, D., and Pesaturo F. J., ``Synthetic Aperture Sonar: Frontiers in Underwater Imaging,' Sea Technology, 45(11), pp. 27-32, November 2004.
[20] Jonsson, M., Pihl, J., Aklint, M., ``Imaging of Buried Objects by Low Frequency
SAS,' IEEE Journal of Oceans, Sweden, Europe, vol. 1, pp. 669-673, June 2005.
[21] Wunderlich, J., Wendt, G. and Muller S., ``High-resolution echo-sounding
and detection of embedded archaeological objects with nonlinear sub-bottom profilers,' Marine Geophysical Researches, 26:123-133, 2005.
[22] Marchand, B., Saito, N. and Xiao, H., ``Classification of objects in synthetic aperture sonar images,' Pro. 14th IEEE Statistical Processing Workshop, pp. 433-437, 2007.
[23] National Instruments Corporation, LabVIEW Basics I: Introduction Course Manual, September, 2007.
[24] Hayes, M. P., ``Peer - Reviewed Technical Communication,' IEEE J. of Oceanic Engineering, 34:207-224, 2009.
[25] Taylor and Francis Group LCC, Radar Signal Analysis and Processing Using
MATLAB, 2009.
[26] Groen, J., Coiras, E., Del Rio Vera, J., and Evans, B., ``Model-based sea mine
classification with synthetic aperture sonar,' IET Radar Sonar Navig., vol. 4, Iss. 1, pp. 62-73, 2010.
[27] 李蓉,《合成孔徑聲納系統技術研究》,西北工業大學碩士論文,中國,(2001)。
[28] 王明遠,《高清晰度海底成像合成孔徑聲納系統》,北京遙感信息研究所,中國,(1997)。
[29] 劉金源,《水中聲學─水聲系統之基本操作原理》,國立編譯館,民90。
[30] 劉金源,《海洋聲學導論~─~海洋聲波傳播與粗糙面散射之基本原理》,中山大學出版社,民 91。
[31] 羅華強,《訊號處理─MATLAB~的應用》,全華科技圖書股份有限公司,民 92。
[32] 曾禹村,張寶俊,沈庭芝,唐曉英,《信號與系統》,新文京開發出版股份有限公司,民 94。
[33] 喻嘉福,《銅球目標物散射強度量測之研究~─~窄頻訊號分析》,國立中山大學海下技術研究所碩士論文,民 95。
[34] 陳信瑜,《極淺海環境中水聲之傳播 : 儀器測試與現場實側資料分析》,國立中山大學海下技術研究所碩士論文,民 95。
[35] 具再熙,《數位訊號處理-使用 Matlab》,儒林圖書有限公司,民 97。
[36] 蕭名亨,《西子灣極淺海域水聲傳播實驗》,國立中山大學海下科技暨應用海洋物理研究所碩士論文,民 98。
[37] 黃千芬,劉金源,楊士鋒,宋振宏,「合成孔徑聲納系統之數值模擬研究」,第十八屆國防科技學術研討會論文集,民 98。
[38] 宋振宏,黃千芬,劉金源,「合成孔徑聲納系統分析:數值模擬」,第十一屆水下技術研討會暨國科會成果發表會論文集,民 98。
[39]宋振宏,《合成孔徑聲納系統研究》,國立中山大學海下科技暨應用海洋物理研究所碩士論文,民 99。
[40] 張子軒,黃千芬,劉金源,「合成孔徑聲納系統之研究 ─ 縱向解析度分析」,第十三屆水下技術研討會暨國科會成果發表會論文集,民 100。
[41] 錢剛,《合成孔徑聲納系統技術研究》,西北工業大學碩士論文,中國,(2003)。
[42] 李軍,霍國正,鄭一鳴,《合成孔徑聲納新進展》,艦船電子工程,中國,06 期,(2001)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code