Responsive image
博碩士論文 etd-0728112-134938 詳細資訊
Title page for etd-0728112-134938
論文名稱
Title
運用微機電系統技術開發可應用於微波通訊系統之微型變壓器
Development of Micro-transformer by MEMS Technology for Microwave Communication System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-14
繳交日期
Date of Submission
2012-07-28
關鍵字
Keywords
微機電系統、微波通訊系統、微型變壓器、品質因子、插入損失、懸浮式結構
suspending structure, insertion loss, quality- factor, micro transformer, microwave communication system, MEMS
統計
Statistics
本論文已被瀏覽 5689 次,被下載 0
The thesis/dissertation has been browsed 5689 times, has been downloaded 0 times.
中文摘要
傳統平面式微型變壓器因為採用平面式結構,故在高頻操作時大部分電磁波能量會經矽基板而散逸,進而導致元件品質因子低於10以下以及插入損失高達-6 ~ -10 dB。為了提升品質因子與降低插入損失,本論文運用微機電系統技術開發一種具懸浮式結構之雙埠與三埠微型變壓器,其主要結構是由兩個互相纏繞且具懸浮結構之微型電感器組成,而每個微型電感器是由厚度為0.32 µm 之氮化鉭/鉭/銅底電極、高度為10 µm 之銅支撐柱及厚度為6 µm 之螺旋銅導體層所構成。
本研究採用田口法與商用電磁模擬軟體(Ansoft-HFSS)分析矽基懸浮式微型變壓器之最佳化銅導體層尺寸,並且模擬該元件之高頻特性,包括電感值、磁耦合系數、品質因子、不平衡振幅差、不平衡相位差、共模拒斥比與插入損失。本論文在製程方面主要是採用面型微加工與電化學沉積技術以完成懸浮式微型變壓器之製作,製作流程包含五次光學微影製程與八次薄膜沉積製程。
經商用網路分析儀(Agilent-E8364B)與模擬軟體(Agilent-ADS)之量測與分析,本論文所開發之雙埠變壓器於5.2 GHz中心頻率下,具有高磁耦合系數(0.78)與相當高之品質因子(17.20)。在相同操作頻率下,所製備之三埠變壓器亦具有相當低之不平衡振幅差(-0.02 dB)與不平衡相位差(1.65°),以及相當高之共模拒斥比(36.78 dB)與極低之插入損失(-4.52 dB)。本論文所開發之微型變壓器,其晶片尺寸僅為0.7 mm×0.7 mm×0.5 mm且具有優良之高頻特性,所以相當適合應用於可攜式微波通訊系統之中。
Abstract
The conventional planar micro transformers presented very low quality-factor (Q<10) and very high insertion loss (-6 ~ -10 dB) at high operation frequency since most of the microwave power is dissipated through the silicon substrate. To increase the quality-factor and reduce the insertion loss of silicon-based transformers, this dissertation presents a two-port and three-port micro transformers with suspending structure utilizing the micro-electro-mechanical systems (MEMS) technology. The proposed silicon-based transformers are constructed by two winding and suspending micro inductors. Each suspending micro inductor consists of a 0.32 &micro;m-thick TaN/Ta/Cu bottom electrode, a 10 &micro;m-height supporting copper vias and a 6 &micro;m-thick spiral copper conducting layer.
This research adopts the Taguchi method and commercial electromagnetic simulation software (Ansoft-HFSS) to optimize the dimensional specifications of the copper conducting layer. Many high frequency characteristics of the suspending micro transformers are simulated, including the inductance, the magnetic coupling factor, the quality-factor, the magnitude imbalance, the phase imbalance, the common mode rejection ratio (CMRR) and the insertion loss. In this research, the surface micromachining and electrochemical deposition techniques are used to implement the suspending micro transformers. The main fabrication steps include five photolithography and eight thin-film deposition processes.
According to the simulation and measurement results from the commercial network analyzer (Agilent-E8364B) and software (Agilent-ADS), the implemented two-port transformer demonstrates a high magnetic coupling factor (0.78) and a very high quality-factor (Q=17.20) at 5.2 GHz. On the other hand, the proposed three-port transformer presents a low magnitude imbalance (-0.02 dB), a low phase imbalance (1.65°), a high CMRR (36.78 dB) and a very low insertion loss (-4.52 dB) under the same operation frequency. In this dissertation, a novel suspending micro transformer has been developed and characterized. The proposed micro transformer is very suitable for being used in the portable microwave communication system due to its small chip size (0.7 mm×0.7 mm×0.5 mm) and excellent high-frequency characterization.
目次 Table of Contents
Acknowledgement i
Abstract(in Chinese) iii
Abstract(in English) iv
Contents vi
List of Figures viii
List of Tables xii

Chapter 1 Introduction 1
1-1 Research Motivation 1
1-2 Review of Transformer 3
1-3 Overview of Dissertation 11
Chapter 2 MEMS Technology and Basic Transformer Theory 13
2-1 MEMS Technology 13
2-1-1 Surface Micromachining 15
2-2 Basic Micro Transformer Theory 18
2-2-1 Two-port Micro Transformer 18
2-2-2 Three-port Micro Transformer 23
2-2-3 Suspending Structure 26
Chapter 3 Design and Simulation of Micro Transformer 28
3-1 Introduction 28
3-2 Process Flow Design 33
3-3 Simulation Results and Discussion 36
3-3-1 Two-port Micro Transformer 36
3-3-2 Three-port Micro Transformer 41
Chapter 4 Fabrication of Micro Transformer .45
4-1 Layout Design 45
4-1-1 Two-port Micro Transformer 45
4-1-2 Three-port Micro Transformer 48
4-2 Fabrication Process Flow 50
4-2-1 Two-port Micro Transformer 50
4-2-2 Three-port Micro Transformer 54
Chapter 5 Characterization Results and Discussion 59
5-1 Key Problems and Solve Methods 59
5-1-1 GSG Bottom Electrodes of Micro Transformer 59
5-1-2 Supporting Copper Vias of Micro Transformer 61
5-1-3 Spiral Copper Conducting Layer of Micro Transformer 62
5-1-4 Microstructures Inspection by SEM 64
5-2 Simulation and Measurement Results 66
5-2-1 Two-port Micro Transformer 66
5-2-2 Three-port Micro Transformer 71
Chapter 6 Conclusion and Future Works 74
6-1 Conclusion 74
6-2 Future Work 75
Bibliography 77
參考文獻 References
[1] A.G. Besoli, F.D. Flaviis, A multifunctional reconfigurable pixeled antenna using MEMS Technology on printed circuit board, IEEE Trans. Antennas Propag. 59 (2011) 4413&#8722;4424.
[2] A. Grau, J. Romeu, M.-J. Lee, S. Blanch, L. Jofre, F. D. Flaviis, A dual-linearly-polarized MEMS-reconfigurable antenna for narrowband MIMO communication Systems, IEEE Trans. Antennas Propag. 58 (2010) 4&#8722;17.
[3] C.-C. Cheng, B. Lakshminarayanan, A. Abbaspour-Tamijani, A programmable lens-array antenna with monolithically integrated MEMS switches, IEEE Trans. Microw. Theory Tech. 57 (2009) 1874&#8722;1884.
[4] V. Sekar, M. Armendariz, K. Entesari, A 1.2–1.6-GHz substrate-integrated-waveguide RF MEMS Tunable Filter, IEEE Trans. Microw. Theory Tech. 59 (2011) 866&#8722;876.
[5] V. Sekar, K. Entesari, Pole-perturbation theory for nonlinear noise analysis of all-pole RF MEMS tunable filters, IEEE Trans. Microw. Theory Tech. 58 (2010) 2475&#8722;2489.
[6] N. Zhang, Z. Deng, C. Shu, H. Wang, Design and analysis of a tunable bandpass filter employing RF MEMS Capacitors, IEEE Electron Device Lett. 32 (2011) 1460&#8722;1462.
[7] M. Daneshmand, S. Fouladi, R.R. Mansour, M. Lisi, T. Stajcer, Thermally actuated latching RF MEMS switch and its characteristics, IEEE Trans. Microw. Theory Tech. 57 (2009) 3229&#8722;3238.
[8] K.Y. Chan, R. Ramer, R.R. Mansour, Novel miniaturized RF MEMS staircase switch matrix, IEEE Microw. Wireless Compon. Lett. 22 (2012) 117&#8722;119.
[9] O. Aharon, L. Gal, Y. Nemirovsky, Hybrid RF-MEMS switches realized in SOI wafers by bulk micromachining, J. Microelectromech. Syst. 19 (2010) 1162&#8722;1174.
[10] H.E. Ahmady, A. Zaki, H. Elsimary, H. Hassan, Design of integrated CMOS LNA using suspended MEMS inductor for wireless applications, IEEE Int. Signals, Circuits and Systems, Medenine, Tunisia, 06&#8722;08 Nov. 2009, pp. 374&#8722;379.
[11] A. Jajoo, L. Wang, T. Mukherjee, MEMS varactor enabled frequency- reconfigurable LNA and PA in the upper UHF band, IEEE Int. MTT-S’09, Pittsburgh, PA, USA, 7&#8722;12 June 2009, pp. 1121&#8722;1124.
[12] J.-P. Busqu&egrave;re, K. Grenier, D. Dubuc, E. Fourn, P. Ancey, R. Plana, MEMS IC concept for reconfigurable low noise amplifier, IEEE Int. 36th European Microwave, Manchester, UK, 10&#8722;15 Sep. 2006, pp. 1358&#8722;1361.
[13] M.H. Perrott, S. Pamarti, E.G. Hoffman, F.S. Lee, S. Mukherjee, C. Lee, V. Tsinker, S. Perumal, B.T. Soto, N. Arumugam, B.W. Garlepp, A low area, switched-resistor based fractional-N synthesizer applied to a MEMS-based programmable oscillator, IEEE J. Solid-State Circuits 45 (2010) 2566–2581.
[14] G. Liu, M. Kaynak, T. Purtova, A.C. Ulusoy, B. Tillack, H. Schumacher, Dual-band millimeter-wave VCO with embedded RF-MEMS switch module in BiCMOS technology, IEEE Int. Silicon Monolithic Integrated Circuits in RF Systems, Santa Clara, CA, USA, 16&#8722;18 Jan. 2012, pp. 175&#8722;178.
[15] A.R. Chaudhuri, S. Chakraborty, A. Bhattacharya, R.R. Chaudhuri, T.K. Bhattacharyya, System level realization and analysis of MEMS integrated voltage controlled oscillator, IEEE Int. Applied Electromagnetics Conference, Kolkata, India, 14&#8722;16 Dec. 2009, pp. 1&#8722;4.
[16] E.-C. Park, Y.-S. Choi, J.-B. Yoon, E. Yoon, Monolithically integrable RF MEMS passives, J. Semiconductor Technology and Science 2 (2002) 49&#8722;55.
[17] J. Lu, H. Jia, A. Arias, X. Gong, Z.J. Shen, On-chip bondwire transformers for power SOC applications, IEEE Int. Applied Power Electronics Conference, Austin, Texas, USA, 24&#8722;28 Feb. 2008, pp. 199&#8722;204.
[18] S.-L. Liu, K.-H. Chen, T. Chang, A. Chin, A low-power K-band CMOS VCO with four-coil transformer feedback, IEEE Microw. Wireless Compon. Lett. 20 (2010) 459&#8722;461.
[19] Y.-S. Lin, C.-Z. Chen, H.-B. Liang, C.-C. Chen, High-performance On-Chip transformers with partial polysilicon patterned ground shields (PGS), IEEE Electron Device Lett. 54 (2007) 157&#8722;160.
[20] Y.-S. Lin, C.-C. Chen, H.-B. Liang, P.-K. Tsai, C.-Z. Chen, J.-F. Chang, T. Wang, S.-S. Lu, A high-performance micromachined RF monolithic transformer with optimized pattern ground shields (OPGS) for UWB RFIC applications, IEEE Electron Device Lett. 54 (2007) 609&#8722;613.
[21] I. Vajda, A. Hyde, A. Gyore, G. Nador, T. Trollier, B. Sailer, R. Bohm, Slimformer—self-limiting transformer pre-prototype and pilot plant design, construction, and tests, IEEE Trans. Applied Superconductivity 21 (2011) 1298&#8722;1302.
[22] D. Vyroubal, Impedance of the eddy-current displacement probe: The transformer model, IEEE Trans. Instrum. Meas. 53 (2004) 394&#8722;391.
[23] K.-M. Cho, Y.-D. Kim, I.-H. Cho, G.-W. Moon, Transformer integrated with additional resonant inductor for phase-shift full-bridge converter with primary clamping diodes, IEEE Trans. Power Electron. 27 (2012) 2405&#8722;2412.
[24] M. Popov, R.P.P. Smeets, L. Sluis, H. Herdt, J. Declercq, Experimental and theoretical analysis of vacuum circuit breaker prestrike effect on a transformer, IEEE Trans. Power Del. 24 (2009) 1266&#8722;1274.
[25] N.Y. Abed, O.A. Mohammed, Physics-based high-frequency transformer modeling by finite elements, IEEE Trans. Magn. 46 (2010) 3249&#8722;3252.
[26] S. Okabe, G. Ueta, H. Wada, Partial discharge signal propagation characteristics inside the winding of gas-filled power transformer - Experimental study using winding models in the Air, IEEE, Trans. Dielectr. Electr. Insul. 18 (2011) 1658&#8722;1667.
[27] H.L. Li, J.H. Hu, H.L.W. Chan, Finite element analysis on piezoelectric ring transformer, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 51 (2004) 1247&#8722;1254.
[28] S.-T. Ho, Modeling and analysis on ring-type piezoelectric transformers, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 54 (2007) 2376&#8722;2384.
[29] W. Chen, C. L&uuml;, J. Yang, J. Wang, A circular cylindrical, radially polarized ceramic shell piezoelectric transformer, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 56 (2009) 1238&#8722;1245.
[30] S. Dong, A.V. Carazo, S.H. Park, Equivalent circuit and optimum design of a multilayer laminated piezoelectric transformer, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 58 (2011) 2504&#8722;2515.
[31] W.W. Shao, L.J. Chen, C.L. Pan, Y.B. Liu, Z.H. Feng, Power density of piezoelectric transformers improved using a contact heat transfer structure, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 59 (2012) 73&#8722;81.
[32] Y. Yuanmao, K.W.E. Cheng, K. Ding, A novel method for connecting multiple piezoelectric transformer converters and its circuit application, IEEE Trans. Power Electron. 27 (2012) 1926&#8722;1935.
[33] J. Yang, C.-Y. Kim, D.-W. Kim, S. Hong, Design of a 24-GHz CMOS VCO with an asymmetric-width transformer, IEEE Trans. Circuits Systems—II: express briefs 57 (2010) 173&#8722;177.
[34] H.-C. Yeh, Z.-Y. Liao, H. Wang, Analysis and design of millimeter-wave low-power CMOS LNA with transformer-multicascode topology, IEEE Trans. Microw. Theory Tech. 59 (2011) 3441&#8722;3454.
[35] B.-H. Ku, S.-H. Baek, S. Hong, A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips, IEEE Trans. Microw. Theory Tech. 59 (2011) 1599&#8722;1609.
[36] J.-S. Syu, H.-L. Lu, C. Meng, A 0.6-V 30 GHz CMOS quadrature VCO using microwave 1:1:1 trifilar transformer, IEEE Microw. Wireless Compon. Lett. 22 (2012) 88&#8722;90.
[37] H. Lee, C. Park, S. Hong, A quasi-four-pair class-E CMOS RF power amplifier with an integrated passive device transformer, IEEE Trans. Microw. Theory Tech. 57 (2009) 752&#8722;759.
[38] E. Kaymaksut, P. Reynaert, CMOS transformer-based uneven doherty power amplifier for WLAN applications, IEEE 37th Solid-State Circuits Conference, Helsinki, Finland, 12&#8722;16 Sep. 2011, pp. 135&#8722;138.
[39] A. Ya'akobovitz, S. Krylov, Y. Shacham-Diamand, Large angle SOI tilting actuator with integrated motion transformer and amplifier, Sensors Actuators A 148 (2008) 422&#8722;436.
[40] J. Yuans, A.A. Hamzah, B.Y. Majlis, High-frequency analysis on surface micromachined on-chip transformers with stacked interwinding coil structrues, J. Micromech. Microeng. 18 (2008) 1&#8722;6.
[41] P. Haldi, D. Chowdhury, P. Reynaert, G, Liu, A.M. Niknejad, A 5.8 GHz 1V linear power amplifier using a novel On-Chip transformer power combiner in standard 90nm CMOS, IEEE J. Solid-State Circuits 43 (2008) 1054-1063.
[42] W.-Y. Yin, S. Jinglin, J.-F. Mao, L.-W. Li, Experimental characterization of hybrid temperature and frequency effects on the performance of transformers on silicon substrate,” IEEE Trans. Magnetics 42 (2006) 2107-2109.
[43] W.F. Ray, C.R. Hewson, High performance rogowski current transducers, IEEE Industry Applications Conference, Rome, Italy, 8&#8722;12 Oct. 2000, pp. 3083&#8722;3090.
[44] J.H. Hu, H.L. Li, H.L.W. Chan, C.L. Choy, A ring-shaped piezoelectric transformer operating in the third symmetric extensional vibration mode, Sensors Actuators A 88 (2001) 79&#8722;86.
[45] C.C. Lim, K.S. Yeo, K.W. Chew, A. Cabuk, J.-M. Gu, S.F. Lim, C.C. Boon, M.A. Do, Fully symmetrical monolithic transformer (True 1 : 1) for silicon RFIC, IEEE Trans. Microw. Theory Tech. 56 (2008) 2301&#8722;2311.
[46] Y.-S. Choi, J.-B. Yoon, B.-I. Kim, E. Yoon, A high-performance MEMS transformer for silicon RF ICs,” IEEE MEMS’02, Las Vegas, NV, USA, 20&#8722;24 Jan. 2002, pp. 653&#8722;656.
[47] S. Chang, S. Sivoththaman, A tunable RF MEMS transformer on silicon, 7th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Long Beach, CA, USA, 10&#8722;12 Jan. 2007, pp. 177&#8722;180.
[48] C.-H. Huang, C.-H. Chen, T.-S. Horng, Design of marchand balun of spiral shape using physical transformer model on silicon integrated passive device substrate, IEEE Radio and Wireless Symposium, New Orleans, USA, 10&#8722;14 Jan. 2010, pp. 456&#8722;459.
[49] T.-G. Ma, Y.-T. Cheng, A miniaturized multilayered marchand balun using coupled artificial transmission lines, IEEE Microw. Wireless Compon. Lett. 19 (2009) 446&#8722;448.
[50] H.-K. Chiou, H.-H. Lin, C.-Y. Chang, Lumped-element compensated high/low-pass balun design for MMIC double-balanced mixer, IEEE Trans. Microw. Guided Wave Lett. 7 (1997) 248&#8722;250.
[51] W. Zhang, L. Sun, Design and modeling for 6.6 GHz IPD balun, IEEE Communication Technology, Jinan, China, 25&#8722;28 Sep. 2011, pp. 269&#8722;272.
[52] C.-H. Chen, C.-H. Huang, T.-S. Horng, Integrated transformer-coupled balun bandpass filters with an optimal common-mode rejection ratio, IEEE Trans. Compon. Packag. Manufac. Technol. 2 (2012) 53&#8722;62.
[53] H.M. Cheema, P. Sakian, E. Janssen, R. Mahmoudi, A. Roermund, Monolithic transformers for high Frequency bulk CMOS circuits, 9th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, San Diego, CA, USA, 19&#8722;21 Jan. 2009, pp. 1&#8722;4.
[54] A. Vallese, A. Bevilacqua, C. Sandner, M. Tiebout, A. Gerosa, A. Neviani, Analysis and design of an integrated notch filter for the rejection of interference in UWB Systems, IEEE J. Solid-State Circuits 44 (2009) 331–343.
[55] R.C. Frye, K. Liu, G. Badakere, Y. Lin, Design of optimal coupled-resonator baluns in silicon IPD technology, 9th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, San Diego, CA, USA, 26&#8722;29 May 2009, pp. 1900&#8722;1907.
[56] K. Liu, R. Emigh, R.C. Frye, Small form-factor integrated balun with complex impedance matching, IEEE Int. MTT-S’08, Atlanta, GA, USA, 15&#8722;20 June 2008, pp. 1239&#8722;1242.
[57] H.-M. Hsu, J.-S. Huang, S.-Y. Chen, S.-H. Lai, Design of an On-Chip balun with a minimum amplitude imbalance using a symmetric stack layout, IEEE Trans. Microw. Theory Tech. 58 (2010) 814&#8722;819.
[58] M.J. Madou, Fundamentals of MICROFABRICATION, CRC Press, Washington, DC, USA, 2002, pp. 259&#8722;260.
[59] I-Y. Huang, C.-H. Sun, Z.-N. Jiang, K.-T. Hung, Design and fabrication of the glass-based suspended MEMS inductors for wireless communication system applications, 2009 Symposium on Nano Device Technology (SNDT 2009), Hsinchu, Taiwan, 29&#8722;30 Apr. 2009, pp. 66&#8722;67.
[60] I-Y. Huang, C.-H. Sun, K.-Y. Hsu, Improving bandwidth and return loss of Si-based MEMS antenna using suspending and electromagnetic band-gap structures, Sensors Actuators A 174 (2012) 33&#8722;42.
[61] V.K. Varadan, K.J. Vinoy, K.A. Jose, RF MEMS AND THEIR APPLICATION, John Wiley & Sons, Inc., USA, 2003, pp 8, 9.
[62] O. El-Gharniti, E. Kerherv&eacute;, J.-B. B&eacute;gueret, Modeling and characterization of On-Chip transformers for silicon RFIC, IEEE Trans. Microw. Theory Tech. 55 (2007) 607&#8722;615.
[63] C.P. Yue, S.S. Wong, Physical modeling of spiral inductors on silicon, IEEE Electron Device 47 (2000) 560&#8722;568.
[64] J. Shi, W.-Y. Yin, K. Kang, J.-F. Mao, L.-W. Li, Frequency-thermal characterization of On-Chip transformers with patterned ground shields, IEEE Trans. Microw. Theory Tech. 55 (2007) 1&#8722;12.
[65] S.-M. Wu, W.-Y. Lin, K.-Y. Wang, C.-H. Huang, W.-K. Yeh, The high balance symmetric balun for WLAN and WiMAX application using the integrated passive device (IPD) technology, The 10th International Conference on Electronic Packaging Technology & High Density Packaging, Beijing, China, 10&#8722;13 Aug. 2009, pp. 14&#8722;17.
[66] J.R. Long, Monolithic transformers for silicon RF IC design, IEEE J. Solid-State Circuits 35 (2000) 1368–1382.
[67] K. Shibata, K. Hatori, Y. Tokumitsu, H. Komizo, Microstrip spiral directional coupler, IEEE Trans. Microw. Theory Tech. 29 (1981) 680&#8722;689.
[68] E. Frlan, S. Meszaros, M. Cuhaci, J.Wight, Computer-aided design of square spiral transformers and inductors, IEEE Int. MTT-S’89, USA, June 1989, pp. 661&#8722;664.
[69] M.W. Geen, G.J. Green, R.G. Arnold, J.A. Jenkins, R.H. Jansen, Miniature multilayer spiral inductors for GaAs MMICs, in Proc. GaAs IC Symp., Oct. 1989, pp. 303–306.
[70] S.S. Mohan, C.P. Yue, M.M. Hershenson, S.S. Wong, T.H. Lee, Modeling and characterization of on-chip transformers, in Proc. IEDM, Dec. 1998, pp. 531–534.
[71] D.M. Pozar, MICROWAVE ENGINEERING, John Wiley & Sons, Inc., USA, 2005, pp. 2 and 143&#8722;149.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.146.221.204
論文開放下載的時間是 校外不公開

Your IP address is 3.146.221.204
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code