Responsive image
博碩士論文 etd-0728112-232038 詳細資訊
Title page for etd-0728112-232038
論文名稱
Title
人類血紅蛋白單體解離機制及其半胱胺酸的獨特性
Subunit Disassembly of Human Hemoglobin and the Site-specific Roles of Its Cysteine Residues
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-20
繳交日期
Date of Submission
2012-07-28
關鍵字
Keywords
單體介面間作用力、共振拉曼光譜儀、基質輔助雷射脫附游離飛行時間質譜儀、半胱胺酸、單體分離、血紅蛋白
resonance Raman spectroscopy, MALDI-TOF MS, Cysteine, Hemoglobin, Subunit disassembly
統計
Statistics
本論文已被瀏覽 5705 次,被下載 286
The thesis/dissertation has been browsed 5705 times, has been downloaded 286 times.
中文摘要
在人類及其他哺乳類動物中,血紅蛋白扮演輸送氧氣的重要角色。血紅蛋白是由兩個α 球蛋白單體和兩個β 球蛋白單體所組成結構穩定的四聚體蛋白質。α及β 單體在結構上雖然相似,二者卻無法相互取代且缺一不可。當α 及β 單體組成比例或是空間中排列的相對位向不正確時會導致血液疾病的產生,例如:地中海型貧血、鐮刀型貧血等。為深入了解α、β 單體間的交互耦合作用情形以及血紅蛋白如何分離 (disassemble) 成單體的過程,本工作利用有機汞化合物PMB (p-hydroxymercuribenzoate)與血紅蛋白上的半胱胺酸進行反應,使原本穩定的血紅蛋白四聚體結構產生鬆動,進而分離成單體。由於一個血紅蛋白分子包含三種不同的半胱胺酸殘基 (cysteine residue) 分別分佈在β93、α104、β112 位置上,本工作首先利用基質輔助雷射脫附游離飛行時間質譜儀 (Matrix-Assisted Laser
Desorption Ionization Time-Of-Flight Mass spectrometer, MALDI-TOF MS) 觀察血紅蛋白不同位置上的半胱胺酸殘基與PMB 的反應活性、反應順序以及其在單體分離過程中之必要性。為瞭解半胱胺酸殘基與PMB 反應後所導致的結構變化,本工作藉由共振拉曼光譜探討在有氧及無氧環境下,血紅蛋白與不同比例PMB反應所產生的結構轉變。最後結合以上實驗結果探討當PMB 與不同位置上的半胱胺酸殘基反應時可能造成的單體介面間作用力改變,並進而推衍出一血紅蛋白四聚體分離為單體的可能反應機制以及各不同位置上的半胱胺酸殘基在維持血紅蛋白四聚體結構中所扮演的樞鈕角色。
Abstract
Hemoglobin plays an important role in transporting oxygen in human beings and other mammals. Hemoglobin is a tetrameric protein composed of two alpha and two beta subunits. The α and β subunits are both necessary and the stoichiometric ratio of the two dislike subunits is critical for hemoglobin to perform its oxygen-carrying function properly. To better understand the coupling between the α and β subunits and the subunit disassembly pathway, p-hydroxymercuri-benzoate (PMB) has been used to react with the cysteine residues in hemoglobin. The hemoglobin tetramer becomes unstable and disassembles into α and β subunits when the cysteine sites are perturbed
upon reacting with PMB. There are three kinds of cysteine residues, β93, α104 and β112, in human hemoglobin. The reactivity of different cysteine residues with PMB and their reaction sequence have been studied via the Matrix-assisted laser desorption
ionization time-of-flight mass spectrometry (MALDI-TOF MS). The resonance Raman spectroscopy has been used to investigate the structural changes of hemoglobin accompanying the PMB-modification under the oxygenated and deoxygenated conditions. At last, a hemoglobin subunit disassembly mechanism is proposed and the site-specific roles of cysteine residues in human hemoglobin are discussed in detail.
目次 Table of Contents
Chapter 1 Introduction……….........………………………1
1.1. Hemoglobin (Hb) .……………………………………3
1.2. Cysteine (Cys)…....…………………………………...7
1.2.1. The properties of cysteine……………….………..7
1.2.2 . The significance of cysteine in hemoglobin.…..8
1.3. Cysteine-specific reagents………………………...10
1.4. The reaction of hemoglobin with PMB…………....11
1.5. Issues of interest……………………………………14
Chapter 2 Experiments….……………………………....16
2.1. Introduction………………………………..…………16
2.2. Sample preparation…………………..…………….16
2.2.1. Hemoglobin……………………………………….17
2.2.2. Isolation of subunits…………………..………….18
2.3. Experiment techniques…………………………….21
2.3.1. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)...21
2.3.2. Resonance Raman spectroscopy…….………..23
Chapter 3 MALDI-TOF Mass Spectrometric Studies of Hb and PMB-modif i ed Hb…...............................…. . . . 26
3.1. Introduction...............................................…………...26
3.2. Number of Reactive Cysteine Residues to PMB..26
3.3. PMB reacts with Different Cysteine sites sequentially.........................................................................29
3.4. Reaction evolutions of PMB-labeled α and β globins…………….........................................................…34
3.5. All three cysteines are necessary to disassemble Hb…………….................................................................….37
3.6. Summary……………………..........…………………41
Chapter 4 Resonance Raman Spectroscopy of PMB-modified Hemoglobin…...................................................42
4.1 Introduction…………………………....……………...42
4.2 . Hemoglobin has strong absorption at 532 nm...42
4.3. Resonance Raman spectroscopy reveals internal structure changes accompanying the PMB-modification.........................................................................44
4.3.1. 1700-1200 cm-1 region…..……………………...46
4.3.2. 1200-600 cm-1 region………………..……….…53
4.4. Summary……………………………………………..58
Chapter 5 A Proposed Hemoglobin Subunit Disassembly Mechanism and the Roles of Cysteine Residues…………………………….......……………..…60
5.1. Introduction……………….…………….……………60
5.2. Inter-subunit salt bridges of hemoglobin………..60
5.3. Preliminary modification on βCys93 first unlocks α1/β2 interface…................................................................63
5.4. Modification on αCys104 partially unlocks the α1/β1 interfacial contacts……….................................……..70
5.5. Final modification on βCys112 completes the breaking of α1/β1 interface…………………….……….73
Chapter 6 Conclusion………….……………………….78
References………………………..……………………...81
參考文獻 References
1. Hoppe-Seyler, F., U ber die oxydation in lebendem blute. Med.-chem. Untersuch. 1866, 1, 133-140.
2. Perutz, M. F.; Rossmann, M. G.; Cullis, A. F.; Muirhead, H.; Will, G.; North, A. C. T., Structure of Ha moglobin: A Three-Dimensional Fourier Synthesis at 5.5-A . Resolution, Obtained by X-Ray Analysis. Nature 1960, 185, 416-422.
3. Parker, S., The Human Body Book Dorling Kindersley: 2007; p 256.
4. Park, S.-Y.; Yokoyama, T.; Shibayama, N.; Shiro, Y.; Tame, J. R. H., 1.25 A Resolution Crystal Structures of Human Haemoglobin in the Oxy, Deoxy and Carbonmonoxy Forms. J. Mol Biol 2006, 360, 690-701.
5. Burgoyne, J. R.; Madhani, M.; Cuello, F.; Charles, R. L.; Brennan, J. P.; Schroder, E.; Browning, D. D.; Eaton, P., Cysteine Redox Sensor in PKGIa Enables Oxidant-
Induced Activation. Science 2007, 317, 1393-1397.
6. Thomas, S. A.; Storey, K. B.; Baynes, J. W.; Frizzell, N., Tissue Distribution of S-(2-Succino)cysteine (2SC), a Biomarker of Mitochondrial Stress in Obesity and
Diabetes. Obesity 2012, 20, 263-269.
7. Kim, Y. G.; Ho, S. O.; Gassman, N. R.; Korlann, Y.; Landorf, E. V.; Collart, F. R.; Weiss, S., Efficient site-specific Labeling of proteins via cysteines. Bioconjugate Chem. 2008, 19, 786-791.
8. Liu, P.; Wang, Q. S.; Li, X., Studies on CdSe/L-cysteine Quantum Dots Synthesized in Aqueous Solution for Biological Labeling. J. Phys. Chem. C 2009, 113, 7670-7676.
9. Vohnik, S.; Hanson, C.; Tuma, R.; Fuchs, J. A.; Woodward, C.; Thomas, G. J., Conformation, stability, and active-site cysteine titrations of Escherichia coli D26A thioredoxin probed by Raman spectroscopy. Protein Sci. 1998, 7, 193-200.
10. Gentzsch, M.; Kota, P.; Dang, Y.; Dokholyan, N. V.; Stutts, M., Monitoring cleavage, surface exposure and conformation of the extracellular domains of enac
by scanning cysteine accessibility mutagenesis. Pediatr. Pulm. 2011, 257-257.
11. Raibaud, O.; Goldberg, M. E., The reactivity of one essential cysteine as a conformation probe in Escherichia coli tryptophanase. Application to study of
structural influence of subunit interactions. Eur. J. Biochem. 1977, 73, 591-599.
12. Ballery, N.; Minard, P.; Desmadril, M.; Betton, J. M.; Perahia, D.; Mouawad, L.; Hall, L.; Yon, J. M., Introduction of internal cysteines as conformation probes in yeast phosphoglycerate kinase. Protein Eng. 1990, 3, 199-204.
13. Vasquez, G. B.; Karavitis, M.; Ji, X. H.; Pechik, I.; Brinigar, W. S.; Gilliland, G. L.; Fronticelli, C., Cysteines beta 93 and beta 112 as probes of conformational and
functional events at the human hemoglobin subunit interfaces. Biophys. J. 1999, 76, 88-97.
14. Alben, J. O.; Bare, G. H., Fourier-Transform Infrared Spetroscopic Study of Molecular-interactions in Hemoglobin. Appl. Optics 1978, 17, 2985-2990.
15. Taylor, J. F.; Antonini, E.; Wyman, J., The Oxygen Equilibrium of Cystine-treated Human Hemoglobin without Free Sulfhydryl Groups. J. Biol. Chem. 1963, 238, 2660-2662.
16. Waterman, M. R., Effect of carbamidomethylation of cysteine residues G11(104)alpha on properties of hemoglobin a. Biochimica Et Biophysica Acta 1976,
439, 167-174.
17. Yamaguchi, T.; Pang, J.; Reddy, K. S.; Surrey, S.; Adachi, K., Role of β112 Cys (G14) in Homo- (β4) and Hetero- (α2β2) Tetramer Hemoglobin Formation. J. Biol. Chem. 1998, 273, 14179-14185.
18. Juszczak, L. J.; Manjula, B.; Bonaventura, C.; Acharya, S. A.; Friedman, J. M., UV resonance Raman study of beta93-modified hemoglobin A chemical modifierspecific effects and added influences of attached poly(ethylene glycol) chains. Biochemistry 2002, 41, 376-385.
19. Khan, I.; Dantsker, D.; Samuni, U.; Friedman, A. J.; Bonaventura, C.; Manjula, B.; Acharya, S. A.; Friedman, J. M., β93 Modified Hemoglobin: Kinetic and
Conformational Consequences†. Biochemistry 2001, 40, 7581-7592.
20. Riggs, A., Molecular adaptation in hemoglobins - nature of the Bohr effect. Nature 1959, 183, 1037-1038.
21. Riggs, A., Binding of N-ethylmaleimide by human hemoglobin and its effect upon oxygen equilibrium. J. Biol. Chem 1961, 236, 1948-1954.
22. Storz, J. F.; Weber, R. E.; Fago, A., Oxygenation properties and oxidation rates of
mouse hemoglobins that differ in reactive cysteine content. Comp. Biochem. Phys. A 2012, 161, 265-270.
23. Stamler, J. S.; Jia, L.; Eu, J. P.; McMahon, T. J.; Demchenko, I. T.; Bonaventura, J.; Gernert, K.; Piantadosi, C. A., Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 1997, 276, 2034-2037.
24. Ferranti, P.; Malorni, A.; Mamone, G.; Sannolo, N.; Marino, G., Characterisation of S-nitrosohaemoglobin by mass spectrometry. Febs Letters 1997, 400, 19-24.
25. Singel, D. J.; Stamler, J. S., Chemical physiology of blood flow regulation by red blood cells: The role of nitric oxide and S-nitrosohemoglobin. Annu. Rev. Physiol. 2005, 67, 99-145.
26. Bonaventura, C.; Godette, G.; Ferruzzi, G.; Tesh, S.; Stevens, R. D.; Henkens, R., Responses of normal and sickle cell hemoglobin to S-nitroscysteine: implications for therapeutic applications of NO in treatment of sickle cell disease. Biophys. Chem. 2002, 98, 165-181.
27. Knee, K. M.; Roden, C. K.; Flory, M. R.; Mukerji, I., The role of β93 Cys in the inhibition of Hb S fiber formation. Biophys. Chem. 2007, 127, 181-193.
28. Lu, M. L.; Li, X. F.; Le, X. C.; Weinfeld, M.; Wang, H. L., Identification and characterization of cysteinyl exposure in proteins by selective mercury labeling and
nano-electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Sp. 2010, 24, 1523-1532.
29. Alben, J. O.; Bare, G. H., Ligand-dependent heme-protein interactions in human hemoglobin studied by Fourier transform infrared spectroscopy. Effects of
quaternary structure on alpha chain tertiary structure measured at the alpha-104(G11) cysteine-SH. J. Biol. Chem 1980, 255, 3892-3897.
30. Adachi, K.; Yamaguchi, T.; Pang, J.; Surrey, S., Effects of Increased Anionic Charge in the β-Globin Chain on Assembly of Hemoglobin In Vitro. Blood 1998, 91, 1438-1445.
31. Taylor, J. F.; Antonini, E.; Brunori, M.; Wyman, J., Studies on Human Hemoglobin Treated with Various Sulfhydryl Reagents. J. Biol. Chem. 1966, 241, 241-248.
32. Chiancone, E.; Currell, D. L.; Vecchini, P.; Antonini, E.; Wyman, J., Kinetics of the Reaction of the Masked and Free Sulfhydryl Groups of Human Hemoglobin with p-Mercuribenzoate. J. Biol. Chem. 1970, 245, 4105-4111.
33. Bucci, E.; Fronticelli, C., A New Method for the Preparation of α and β Subunits of Human Hemoglobin. J. Biol. Chem 1965, 240, PC551-PC552.
34. Yamada, K.; Ishikawa, H.; Mizutani, Y., Protein Dynamics of Isolated Chains of Recombinant Human Hemoglobin Elucidated by Time-Resolved Resonance Raman Spectroscopy. J. Phys. Chem. B 2012, 116, 1992-1998.
35. Birukou, I.; Maillett, D. H.; Birukova, A.; Olson, J. S., Modulating Distal Cavities in the α and β Subunits of Human HbA Reveals the Primary Ligand Migration
Pathway. Biochemistry 2011, 50, 7361-7374.
36. Birukou, I.; Schweers, R. L.; Olson, J. S., Distal Histidine Stabilizes Bound O-2 and Acts as a Gate for Ligand Entry in Both Subunits of Adult Human Hemoglobin. J. Biol. Chem. 2010, 285, 8840-8854.
37. Hu, X. H.; Spiro, T. G., Tyrosine and tryptophan structure markers in hemoglobin ultraviolet resonance Raman spectra: Mode assignments via subunit-specific isotope labeling of recombinant protein. Biochemistry 1997, 36, 15701-15712.
38. Ioppolo, C.; Chiancone, E.; Antonini, E.; Wyman, J., Dissociation of fetal hemoglobin by p-chloromercuribenzoate and preparation of native γ chains. Arch. Biochem. Biophys. 1969, 132, 249-254.
39. Mawjood, A. H. M.; Miyazaki, G.; Kaneko, R.; Wada, Y.; Imai, K., Site-directed mutagenesis in hemoglobin: test of functional homology of the F9 amino acid
residues of hemoglobin alpha and beta chains. Protein Eng. 2000, 13, 113-120.
40. Rosemeyer, M. A.; Huehns, E. R., On the mechanism of the dissociation of haemoglobin. J. Mol. Biol. 1967, 25, 253-273.
41. Benesch, R. E.; Benesch, R., The Influence of Oxygenation on the Reactivity of the —SH Groups of Hemoglobin. Biochemistry 1962, 1, 735-738.
42. Zijistra, W. G.; Buursma, A.; Meeuwsen-van der Roest, W. P., Absorption Spectra of Human Fetal and Adult Oxyhemoglobin, De-Oxyhemoglobin. Clin. Chem. 1991, 37, 1633-1638.
43. Yip, Y. K.; WAKS, M.; BEYCHOK, S., Reconstitution of native human hemoglobin from separated globin chains and alloplex intermediates. Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 64-68.
44. Jurinke, C.; Oeth, P.; Boom, D. v. d., MALDI-TOF Mass Spectrometry. Mol. Biotechnol. 2004, 26, 147-163.
45.httpprescottbiochem09.wikispaces.comHow+does+MALDI-TOF+work%3F.
46. Larkin, P. J., IR and Raman Spectroscopy. 2005, pp. 1-4.
47. http://en.wikipedia.org/wiki/Raman_spectroscopy.
48. Wada, Y., Advanced analytical methods for hemoglobin variants. J. Chromat. B 2002, 781, 291-301.
49. Jones, E. M.; Balakrishnan, G.; Spiro, T. G., Heme Reactivity is Uncoupled from Quaternary Structure in Gel-Encapsulated Hemoglobin: A Resonance Raman
Spectroscopic Study. J. Am. Chem. Soc. 2012, 134, 3461-3471.
50. Wood, B. R.; Asghari-Khiavi, M.; Bailo, E.; McNaughton, D.; Deckert, V., Detection of Nano-Oxidation Sites on the Surface of Hemoglobin Crystals Using Tip-Enhanced Raman Scattering. Nano Letters 2012, 12, 1555-1560.
51. Kneipp, J.; Balakrishnan, G.; Chen, R. P.; Wu, Q.; Giovannelli, J. L.; Tam, T. C. S.; Chien, H.; Spiro, T. G., Time-resolved UV resonance Raman spectroscopy of
hemoglobin sitemutants to study the role of interhelical tyrosine H-bonds. Biophys. J. 2005, 88, 392A-392A.
52. Torres Filho, I. P.; Terner, J.; Pittman, R. N.; Proffitt, E.; Ward, K. R., Measurement of hemoglobin oxygen saturation using Raman microspectroscopy and 532-nm excitation. J. Appl. Physiol. 2008, 104, 1809-1817.
53. Balakrishnan, G.; Zhao, X.; Podstawska, E.; Proniewicz, L. M.; Kincaid, J. R.; Spiro, T. G., Subunit-Selective Interrogation of CO Recombination in
Carbonmonoxy Hemoglobin by Isotope-Edited Time-Resolved Resonance Raman Spectroscopy. Biochemistry 2009, 48, 3120-3126.
54. Balakrishnan, G.; Ibrahim, M.; Spiro, T. G., Time-resolved UV resonance Raman spectroscopy with sub-microsecond photolysis pulse reveals new insights in the allosteric pathway of hemoglobin. Biophys. J. 2007, 381A-381A.
55. Balakrishnan, G.; Tsai, C. H.; Wu, Q.; Case, M. A.; Pevsner, A.; McLendon, G. L.; Ho, C.; Spiro, T. G., Hemoglobin site-mutants reveal dynamical role of interhelical H-bonds in the allosteric pathway: Time-resolved UV resonance Raman evidence for intra-dimer coupling. J. Mol. Biol. 2004, 340, 857-868.
56. Scott, T. W.; Friedman, J. M., Tertiary-structure relaxation in hemoglobin: a transient Raman study. J. Am. Chem. Soc. 1984, 106, 5677-5687.
57. Friedman, J. M.; Rousseau, D. L.; Ondrias, M. R., Time-Resolved Resonance Raman Studies of Hemoglobin. Annu. Rev. Phys. Chem. 1982, 33, 471-491.
58. Yoo, B. K.; Kruglik, S. G.; Lamarre, I.; Martin, J. L.; Negrerie, M., Absorption Band III Kinetics Probe the Picosecond Heme Iron Motion Triggered by Nitric
Oxide Binding to Hemoglobin and Myoglobin. J. Phys. Chem. B 2012, 116, 4106-4114.
59. Fermi, G.; Perutz, M. F.; Shaanan, B.; Fourme, R., The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J. Mol. Biol. 1984, 175, 159-174.
60. Abe, M.; Kitagawa, T.; Kyogoku, Y., Resonance Raman spectra of octaethylporphyrinato-Ni(II) and meso-deuterated and 15N substituted derivatives.
II. A normal coordinate analysis. J. Chem. Phys. 1978, 69, 4526-4534.
61. Hu, S. Z.; Smith, K. M.; Spiro, T. G., Assignment of protoheme Resonance Raman spectrum by heme labeling in myoglobin. J. Am. Chem. Soc. 1996, 118, 12638-12646.
62. De Luca, A. C.; Rusciano, G.; Ciancia, R.; Martinelli, V.; Pesce, G.; Rotoli, B.; Selvaggi, L.; Sasso, A., Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers. Opt. Express 2008, 16, 7943-7957.
63. Rusciano, G.; De Luca, A. C.; Pesce, G.; Sasso, A., Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders. Sensors 2008, 8, 7818-7832.
64. Zhu, G. Y.; Zhu, X.; Fan, Q.; Wan, X. L., Raman spectra of amino acids and their aqueous solutions. Spectrochim. Acta. A. 2011, 78, 1187-1195.
65. Pfluger, F.; Hernandez, B.; Ghomi, M., Vibrational Analysis of Amino Acids and Short Peptides in Hydrated Media. VII. Energy Landscapes, Energetic and Geometrical Features of L-Histidine with Protonated and Neutral Side Chains. J. Phys. Chem. B 2010, 114, 9072-9083.
66. Yeo, B. S.; Madler, S.; Schmid, T.; Zhang, W. H.; Zenobi, R., Tip-enhanced Raman spectroscopy can see more: The case of cytochrome C. J. Phys. Chem. C 2008, 112, 4867-4873.
67. Jenkins, A. L.; Larsen, R. A.; Williams, T. B., Characterization of amino acids using Raman spectroscopy. Spectrochim. Acta. A. 2005, 61, 1585-1594.
68. Kilmartin, J. V.; Fogg, J. H.; Perutz, M. F., Role of C-terminal histidine in the alkaline Bohr effect of human hemoglobin. Biochemistry 1980, 19, 3189-3193.
69. Baldwin, J.; Chothia, C., Haemoglobin: The structural changes related to ligand binding and its allosteric mechanism. J. Mol. Biol. 1979, 129, 175-220.
70. Chen, R. P.; Spiro, T. G., Monitoring the allosteric transition and CO rebinding in hemoglobin with time-resolved FTIR spectroscopy. J. Phys. Chem. A 2002, 106, 3413-3419.
71. Gregoriou, V. G.; Jayaraman, V.; Hu, X. H.; Spiro, T. G., FT-IR Difference Spectroscopy of Hemoglobins - A and Kempsey - Evidence That a Key Quaternary Interaction Induces Protonation of Asp β99. Biochemistry 1995, 34, 6876-6882.
72. Hu, X.; Dick, L. A.; Spiro, T. G., Fourier Transform Infrared Evidence against Asp β99 Protonation in Hemoglobin Nature of the Tyr α42−Asp β99 Quaternary HBond. Biochemistry 1998, 37, 9445-9448.
73. Kavanaugh, J. S.; Rogers, P. H.; Arnone, A.; Hui, H. L.; Wierzba, A.; DeYoung, A.; Kwiatkowski, L. D.; Noble, R. W.; Juszczak, L. J.; Peterson, E. S.; Friedman, J. M.,
Intersubunit Interactions Associated with Tyr42α Stabilize the Quaternary-T Tetramer but Are Not Major Quaternary Constraints in Deoxyhemoglobin.
Biochemistry 2005, 44, 3806-3820.
74. Nagatomo, S.; Nagai, M.; Kitagawa, T., A New Way To Understand Quaternary Structure Changes of Hemoglobin upon Ligand Binding On the Basis of UV92 Resonance Raman Evaluation of Intersubunit Interactions. J. Am. Chem. Soc. 2011, 133, 10101-10110.
75. Adachi, K.; Yang, Y.; Lakka, V.; Wehrli, S.; Reddy, K. S.; Surrey, S., Significance of β116 His (G18) at α1β1 Contact Sites for αβ Assembly and Autoxidation of
Hemoglobin. Biochemistry 2003, 42, 10252-10259.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code