Responsive image
博碩士論文 etd-0728113-151659 詳細資訊
Title page for etd-0728113-151659
論文名稱
Title
新穎電薄膜程序處理生活污水中之環境荷爾蒙及藥物
Removal of Environmental Hormones and Pharmaceuticals from WWTP Sewage by a Novel Electromembrane Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
218
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-05
繳交日期
Date of Submission
2013-08-28
關鍵字
Keywords
薄膜積垢、電過濾、電混凝、管狀碳質/陶瓷複合膜、污水處理廠、藥物、環境荷爾蒙
Fouling, Tubular carbonaceous/ceramic composite membrane, WWTP, Parmaceuticals, EF, EC, Endocrine Disrupting Chemicals
統計
Statistics
本論文已被瀏覽 5698 次,被下載 840
The thesis/dissertation has been browsed 5698 times, has been downloaded 840 times.
中文摘要
近來眾多研究報告指出,一般污水處理廠無法有效去除水中的新興污染物 (例如:咖啡因 (Caffeine)、雙酚A (Bisphenol A) 等),若這些污水廠之放流水進入承受水體,並成為飲用水源,則會增加人體暴露在殘留新興污染物之機會。本研究之目的為:(1) 調查關切的藥物於某校園生活污水廠各處理單元之流佈及宿命;(2) 利用新穎管狀碳質/陶瓷複合膜結合同步電混凝/電過濾 (EC/EF) 程序處理含環境荷爾蒙及藥物之水樣,並評估最佳操作參數處理該校園生活污水之可行性;(3) 藉由Hermia 模式及阻力串聯模式來分析薄膜積垢現象及積垢阻力組成。
經由長期 (2010/09至2012/06) 每月份監測,於污水廠進流水中測得之藥物以先鋒黴素Ⅳ (Cefalexin)、咖啡因及磺胺甲噁唑 (Sulfamethoxazole) 具有較高檢測濃度和檢出率,最高檢測值分別為20,332.1 ng/L、30,490.2 ng/L及2,120.8 ng/L;檢出率則分別為72.7%、100%及100.0%。由單日間歇性監測結果可知,該校園生活污水廠中之上流式厭氧污泥反應池對於關切的藥物 (包括:1,1-二甲基雙胍鹽酸鹽 (1,1-Dimethylbiguanide hydrochloride)、先鋒黴素Ⅳ、四環素 (Tetracycline)、咖啡因、磺胺甲噁唑、紅黴素 (Erythromycin)、萘普生 (Naproxen)、三氯沙 (Triclosan)、布洛芬 (Ibuprofen)、待克菲那 (Diclofenac) 及吉非羅齊 (Gemfibrozil) 之平均去除率為46.03-61.12%,接觸氧化池為31.39-59.73%、終沉池為12.75-15.53%,而消毒處理單元為6.40-23.23%。
接著,利用反應曲面法來評估二種碳質/陶瓷複合膜搭配同步電混凝/電過濾程序處理含環境荷爾蒙及藥物之效能,碳/氧化鋁複合膜之聯立最佳操作參數為電場強度 45.71 V/cm及過濾壓差156.45 kPa;而碳纖維/碳/氧化鋁複合膜部分,最佳操作參數則為電場強度35.53 V/cm及過濾壓差330.59 kPa。
最後,經由Hermia阻塞模式及阻力串聯模式來探討碳質/陶瓷複合膜對於生活污水之阻塞情形,研究發現碳/氧化鋁複合膜主要以中等程度阻塞為主,而碳纖維/碳/氧化鋁複合膜則以濾餅阻塞現象為主;以阻力串聯模式來看,碳纖維/碳/氧化鋁複合膜之不可逆阻力較碳/氧化鋁複合膜小,而碳纖維/碳/氧化鋁複合膜過濾該校園生活污水於處理時間前10分鐘多以不可逆積垢為主,後續漸以可逆積垢為主。據此,碳纖維層確實具有提昇陶瓷複合膜之處理能力之功效。
Abstract
In recent years, many studies have indicated that wastewater treatment plants (WWTPs) are incapable of removing emerging contaminants (e.g., caffeine and bisphenol A) effectively. Wastewater recycling increases the opportunity of emerging contaminants introduced into the drinking water systems and thus human exposure to emerging contaminants has escalated. The objectives of this research are three-fold: (1) to investigate the concentration variations and transport/spreading of pharmaceuticals in the water specimens obtained from major treatment units of the sewage treatment plant on a selected campus; (2) to treat emerging contaminants containing solutions by a combined treatment system of the simultaneous electrocoagulation/electrofiltration (EC/EF) process coupled with tubular carbonaceous/ceramic composite membrane and evaluate its feasibility of treating campus sewage; (3) to analyze the components of membrane fouling using Hermia’s model and resistances in series model.
Through long term monthly monitoring (from September 2010 to June 2012), cefalexin, caffeine, and sulfamethoxazole were detected at relativly higher concentrations (up to 20,332.1 ng/L, 30,490.2 ng/L, and 2,120.8 ng/L, respectively) and frequency detected (72.7%, 100% and 100%, respectively). The results of bi-hourly monitoring on a 24 h basis showed the ranges of removal efficiencies of concerned pharmaceuticals (including 1,1-dimethylbiguanide hydrochloride, cefalexin, tetracycline, caffeine, sulfamethoxazole, erythromycin, naproxen, triclosan, ibuprofen, diclofenac, and gemfibrozil) by the following treatment units of the selected campus WWTP: (1) up-flow anaerobic sludge bed reactor: 46.03-61.12%; (2) contact aeration unit: 31.39-59.73%; (3) secondary sedimentation tank: 12.75-15.53%, and (4) disinfection unit: 6.04-23.23%.
Furthermore, the experimental design using the response surface methodology (RSM) was employed to evaluate the performance of the EC/EF process in conjunction with tubular carbonaceous/ceramic composite membrane in removing emerging contaminants from aqueous solutions. The resulting optimal conditions for simultaneous optimization for the tubular carbon/alumina composite membrane (TCACM) were determined to be the electric field strength of 45.71 V/cm and transmembrane pressure of 156.45 kPa. The corresponding optimal conditions for the tubular carbon fibers/carbon/alumina composite membrane (TCCACM) were 35.53 V/cm and 330.59 kPa, respectively.
Finally, the membrane fouling was analyzed using Hermia’s model and resistances in series model for the selected campus sewage. Based on Hermia’s model, it was found that the major fouling mechanism for TCACM was intermediate blocking, whereas cake formation for TCCACM. Based on resistances in series model, the results showed that TCCACM had lesser irreversible resistance component (Rirr) than that of TCACM. When using TCCACM to treat the selected campus sewage, fouling in the first 10 min was mainly irreversible, then gradually became reversible afterward. Accordingly, the carbon fiber layer on TCCACM indeed could enhance the treatment performance as compared with TCACM.
目次 Table of Contents
聲明切結書 i
謝誌 ii
摘要 iiii
Abstract iv
目錄 v
圖目錄 xi
表目錄 xv
照片目錄 xix
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
1.3 研究內容與架構 5
第二章 文獻回顧 8
2.1 環境荷爾蒙與藥物及個人保健用品之特性來源 8
2.1.1 水體中之新興污染物之流佈 10
2.1.2 新興污染物常見之處理方式 17
2.1.3 環境荷爾蒙及藥物 20
2.1.4 標的污染物之物化特性 23
2.2 薄膜處理程序 26
2.2.1 薄膜分離程序 26
2.2.2 薄膜組件之形式 28
2.2.3 薄膜之材質 30
2.2.4 薄膜過濾之操作形式 31
2.3 薄膜過濾機制 33
2.3.1 去除率影響因子 36
2.3.1.1 薄膜之物化特性 36
2.3.1.2 新興污染物之物化特性 37
2.3.1.3 水質特性 38
2.4 電混凝/電過濾程序 40
2.4.1 電混凝 40
2.4.2 掃流電過濾 43
2.4.3 同步電混凝/電過濾程序 46
2.5 薄膜積垢 48
2.5.1 薄膜積垢機制 48
2.5.2 薄膜積垢阻力分析 52
2.6 實驗設計 56
2.6.1 迴歸模型 56
2.6.2 中央合成設計 59
2.6.3 迴歸模型的配適性 61
2.6.4 聯立最佳化技術 64
2.6.5 反應曲面法於環工領域之應用 68
第三章 實驗材料、設備與方法 70
3.1 實驗材料 70
3.1.1 水樣來源 70
3.1.2 材料與試劑 71
3.2 實驗設備 73
3.2.1化學氣相沉積設備 73
3.2.2 蒸氣壓氣體滲透偵測裝置 73
3.2.3 同步電混凝/電過濾模組處理系統 73
3.2.4 其他設備及儀器 75
3.3 實驗方法 77
3.3.1 管狀碳/氧化鋁及碳纖維/碳/氧化鋁複合膜製備程序 77
3.3.2 管狀碳/氧化鋁及碳纖維/碳/氧化鋁複合膜之顯微結構觀測與薄膜孔徑分佈測定 78
3.3.3 同步電混凝/電過濾處理系統之操作 79
3.3.4 含環境荷爾蒙及藥物之模擬水樣配製 81
3.3.5 水樣及濾液品質分析方法 81
3.3.6 實驗參數設計 85
第四章 結果與討論 88
4.1 管狀陶瓷複合膜之特性分析 88
4.1.1 複合膜表面與截面顯微結構 88
4.1.2 管狀無機複合膜孔徑分布 90
4.2 藥物在某校園生活污水廠各處理單元之流佈探討 92
4.2.1 長期性每月採樣分析 92
4.2.1.1 進流水之流佈探討 92
4.2.1.2 進流水、放流水之測值與檢出率 .96
4.2.2 單日間歇性採樣分析 101
4.3 同步電混凝/電過濾程序處理含環境荷爾蒙及藥物水樣與實際生活污水 109
4.3.1 管狀碳/氧化鋁複合膜處理含環境荷爾蒙及藥物之水樣 109
4.3.1.1 實驗設計參數對環境荷爾蒙及藥物去除成效之影響 109
4.3.1.2 反應曲面法之變異數分析 114
4.3.1.3 最佳去除環境荷爾蒙及藥物之參數探討 121
4.3.1.4 電場強度及過濾壓差對濾液通量的影響 125
4.3.1.5 臨界電場強度探討 128
4.3.2 管狀碳纖維/碳/氧化鋁複合膜處理含環境荷爾蒙及藥物之水樣 130
4.3.2.1 實驗設計參數對環境荷爾蒙及藥物去除成效之影響 130
4.3.2.2 反應曲面法之變異數分析 131
4.3.2.3 最佳去除環境荷爾蒙及藥物之參數探討 138
4.3.2.4 電場強度及過濾壓差對濾液通量的影響 143
4.3.2.5 臨界電場強度探討 145
4.3.3 整體實驗之評估 147
4.3.3.1 最佳操作條件應用於實際生活污水 147
4.4 管狀碳質/陶瓷複合膜之薄膜積垢分析 149
4.4.1 Hermia Model評估薄膜阻塞機制 149
4.4.2 薄膜積垢阻力分析 153
第五章 結論與建議 158
5.1 結論 158
5.2 建議 160
參考文獻 161
附錄......... 161
附表1 2010年9月至2011年8月期間關切的藥物於某校園生活污水廠進流水之濃度分布情況 (ng/L) 190
附表2 2011年8月至2012年6月期間關切的藥物於某校園生活污水廠進流水之濃度分布情況 (ng/L) 191
附表3碳/氧化鋁複合膜搭配同步電混凝/電過濾程序去除水中之環境荷爾蒙及藥物之實驗數據 192
附表3碳/氧化鋁複合膜搭配同步電混凝/電過濾程序去除水中之環境荷爾蒙及藥物之實驗數據 (續) 193
附表4 碳纖維/碳/氧化鋁複合膜搭配同步電混凝/電過濾程序去除水中之環境荷爾蒙及藥物之實驗數據 194
附表4 碳纖維/碳/氧化鋁複合膜搭配同步電混凝/電過濾程序去除水中之環境荷爾蒙及藥物之實驗數據 (續) 195
附表5 達到95%信心水準之最小F值 196
碩士在學期間發表之學術論文 197
參考文獻 References
中文部分:
行政院農業委員會,“動物用藥品使用準則”,動物用藥品管理法,(2005)。
呂里安,“利用光Fenton法降解與去除水中加保扶毒性之研究”,博士學位論文,國立交通大學環境工程研究所,新竹市 (2011)。
李仲翔,“NF/RO對水中藥物和個人保健用品之去除效能與機制研究”,碩士學位論文,國立高雄第一科技大學環境與安全衛生工程研究所,高雄市 (2011)。
吳幸娟、楊文都,“聚碳酸酯製造業勞工雙酚A暴露調查研究-黃100年度研究計畫A315”,行政院勞工委員會勞工安全衛生研究所,新北市 (2012)。
林正芳、林郁真、余宗賢,“新興污染物 (抗生素與止痛藥) 於特定污染源環境之流佈”,2008年持久有機污染物 (含戴奧辛) 研討會,台北市 (2008)。
林何印,“超濾與逆滲透薄膜程序處理及回收工業廢水之研究”,碩士學位論文,國立中央大學環境工程研究所,中壢市 (2005)。
林郁真,“論環境中之新興污染物”,環境工程會刊,第十八卷,第1期,第39-55頁 (2007)。
周宗享,“同步電混凝/電過濾程序輔助奈米/S2O82-氧化物去除水溶液中之環境荷爾蒙”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2012)。
柯雅雯,“水質特性對NF薄膜去除環境荷爾蒙的影響 (3/3)”,行政院國家科學委員會專題研究計畫,NSC94-2211-E-212-003 (2008)。
高雅慧,“全民健保藥品耗用量與處方劑量之分析研究-以非類固醇抗發炎劑及降血脂藥品為例”,計畫報告書,中央健康保險局 (2003)。
張永信,“薄膜程序用於工業區廢水回收之研究”,碩士學位論文,國立成功大學環境工程研究所,台南市 (2008)。
張育誠,“比較積垢與未積垢薄膜對於藥物及個人保健用品之去除率及通量之影響”,碩士學位論文,國立台灣大學環境工程研究所,台北市 (2010)。
黃文徹,“動物用藥品管理及使用應注意事項”,畜牧半月刊,第六十七卷,第十期,第22-24頁 (2002)。
經濟部工業局,“化學混凝處理單元設計與操作”,工業污染防治技術手冊,第26期,第6-6頁 (1990)。

楊金鐘,“一種利用同步電混凝及電過濾去除水溶液中奈米微粒及乳化液滴之方法與設備”,中華民國發明專利第229656號 (2005)。
楊金鐘,“淺談無機濾膜及其餘廢水處理之應用”,化工技術, 第16卷,第7期,第174-185頁 (2008)。
楊金鐘、顏嘉亨,“利用同步電混凝/電過濾程序去除生活污水中多溴聯苯醚、乙醯胺酚和紅黴素之研究”,第六屆環境荷爾蒙及持久性有機污染物論壇及研討會,高雄市 (2010)。
楊士弘,“利用TMCS表面改質管狀陶瓷膜結合同步電混凝/電過濾程序去除水中之砷及過氯酸鹽”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2011)。
楊幸僖,“臭氧結合紫外光/過氧化氫程序降解水中環境荷爾蒙類物質烷基苯酚之研究”,碩士學位論文,國立中央大學環境工程研究所,中壢市 (2012)。
劉冠池、高思懷、周錦東,“電聚浮除法釋鐵量的推估與控制”,第二十五屆廢水處理技術研討會論文集,第679-684頁,高雄市 (2000)。
劉駿,“含奈米微粒之廢水同步電混凝/電過濾之濾速衰減預測模式”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2007)。
歐陽嶠暉,“下水道工程學”,第三版,長松文化興業股份有限公司,台北市 (2000)。
賴志敏,“利用兩種不同孔徑之單一管狀陶瓷膜結合同步電混凝/電過濾程序回收再利用加工出口區二種放流水及晶背研磨廢水之可行性研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。
陳妤亭,“以反應曲面法探討配水管線之防蝕水質組合”,碩士學位論文,淡江大學水資源及環境工程研究所,新北市 (2010)。
陳富政,“利用電混凝/電過濾技術於廢水處理之應用”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2003)。
陳婕,“藥物與個人保健用品於污水與淨水處理程序中分布與宿命之探討”,碩士學位論文,國立台灣大學環境工程研究所,台北市 (2009)。
陳福安,“環境荷爾蒙調查研究 (3/3) ”,行政院環境保護署九十三年度科技專案研究計畫,計畫編號;EPA-93-E3S5-02-02 (2004)。
蔡杰裕,“鈀膜反應器進行乙醇脫氫反應之研究”,碩士學位論文,逢甲大學化學工程研究所,台中市 (2002)。
蔡啟明,“新穎管狀碳質/陶瓷複合膜製備其應用於同步電混凝/電過濾程序處理化學機械研磨廢水之研究”,博士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。
顏嘉亨,“多管式TiO2/AlO3複合膜同步電混凝/電過濾處理光電產業廢水之效能評估”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。
鄭領英、王學松,“膜的高科技應用”,五南圖書出版股份有限公司,台北市 (2000)。
黎正中、陳源樹,“實驗設計與分析”,高立圖書有限公司,台北市 (2006)。
蘇揚根,“奈米為氣泡浮除技術於半導體工業化學機械研磨廢水處理之應用”,碩士學位論文,國立交通大學環境工程研究所,新竹市 (2005)。
蘇聖凱,“反應曲面法在複雜網路上的應用”,碩士學位論文,國立中央大學統計研究所,中壢市 (2005)。

英文部分:
Abd-Razak, A. R. B, “Removal of Endocrine Disrupting Chemicals Using Low Pressure Reverse Osmosis Membrane,” Master Thesis, Universiti Teknologi Malasia, Malasia (2009).
Bae, S. D., M. Sagehashi, and A. Sakoda, “Prevention of Microparticle Blocking in Activated Carbon Membrane Filtration with Carbon Whisker,” Journal of Membrane Science, Vol. 252, Nos. 1-2, pp. 155-163 (2005).
Barel-Cohen, K., L. S. Shore, M. Shemesh, A. Wenzel, J. Mueller, and N. Kronfeld-Schor, “Monitoring of Natural and Synthetic Hormones in a Polluted River,” Journal of Environmental Management, Vol. 78, No. 1, pp. 16-23 (2006).
Batt, A. L., S. Kim, and D. S. Aga, “Comparison of the Occurrence of Antibiotics in Four Full-Scale Wastewater Treatment Plants with Varying Designs and Operations,” Chemosphere, Vol. 68, No. 3, pp. 428-435 (2007).
Behera, S. K., H. W. Kim, J. E. Oh, and H. S. Park, “Occurrence and Removal of Antibiotics, Hormones and Several Other Pharmaceuticals in Wastewater Treatment Plants of the Largest Industrial City of Korea,” Science of the Total Environment, Vol. 409, No. 20, pp. 4351-4360 (2011).

Bellona, C., J. E. Drewes, P. Xu, and G. Amy, “Factors Affecting the Rejection of Organic Solutes during NF/RO Treatment-A Literature Review,” Water Research, Vol. 38, No. 12, pp. 2795-2809 (2004).
Bellona, C. and J. E. Drewes, “The Role of Membrane Surface Charge and Solute Physico-Chemical Properties in the Rejection of OrganicAcids by NF Membranes,” Journal of Membrane Science, Vol. 249, Nos. 1-2, pp. 227-234 (2005).
Bellona, C., M. Marts, and J. E. Drewes, “The Effect of Organic Membrane Fouling on the Properties and Rejection Characteristics of Nanofiltration Membranes,” Separation and Purification Technology, Vol. 74, No. 1, pp. 44-54 (2010).
Beronius, A., C. Rudén, H. Håkansson, and A. Hanberg, “Risk to All or None?: A Comparative Analysis of Controversies in the Health Risk Assessment of Bisphenol A,” Reproductive Toxicology, Vol. 29, No. 2, pp. 132-146 (2010).
Bolong, N., A. F. Ismail, M. R. Salim, and T. Matsuura, “A Review of the Effects of Emerging Contaminants in Wastewater and Options for Their Removal,” Desalination, Vol. 239, Nos.1-3, pp. 229-246 (2009).
Boussahel, R., S. Bouland, K. M. Moussaoui, and A. Montiel, “Removal of Pesticide Residues in Water Using the Nanofiltration Process,” Desalination, Vol. 132, Nos.1-3, pp. 205-209 (2000).
Bowen, W. R., J. I. Calvo, and A. Hernandez, “Steps of Membrane Blocking in Flux Decline during Protein Microfiltration,”Journal of Membrane Science, Vol. 101, Nos. 1-2, pp. 153-165 (1995).
Brotons, J. A., M. F. Olea-Serrano, M. Villalobos, V. Pedraza, and N. Olea, “Xenoestrogens Released from Lacquer Coatings in Food Cans,” Environmental Health Perspectives, Vol. 103, No. 6, pp. 608-612 (1995).
Carballa, M., F. Omil, J. M. Lema, M. Llompart, C. Garcia-Jaresb, I. Rodríguez, M. Gómez, and T. Ternes, “Behavior of Pharmaceuticals, Cosmetics and Hormones in a Sewage Treatment Plant,” Water Research, Vol. 38, No. 12, pp. 2918-2926 (2004).
Chang, B. V., F. Chiang, and S. Y. Yuan, “Anaerobic Degradation of Nonylphenol in Sludge,” Chemosphere, Vol. 59, No. 10, pp. 1415-1420 (2005).
Chen, C., B. Han, J. Li, T. Shang, J. Zou, and W. Jiang, “A New Model on the Diffusion of Small Molecule Penetrants in Dense Polymer Membranes,” Journal of Membrane Science, Vol. 187, Nos. 1-2, pp.109-118 (2001).
Chen, C. Y., C. Y. Wu, C. H. Wang, and W. H. Ding, “Determination and Distribution Characteristics of Degradation Products of Nonylphenol Polyethoxylates in the Rivers of Taiwan,” Chemosphere, Vol. 65, No. 11, pp. 2275-2281 (2006).
Chen, H. W., C. H. Liang, Z. M. Wu, E. E. Chang, T. F. Lin, P. C. Chiang, and G. S. Wang, “Occurance and Assessment of Treatment Efficiency of Nonylphenol, Octylphenol and Bisphenol-A in Drinking Water in Taiwan,” Science of The Total Environment, Vol. 449, pp. 20-28 (2013).
Cheryan, M., “Ultrafiltration and Microfiltration Handbook,” Technomic Publishing Company, Lancaster Pennsylvania., USA (1998).
Cho, J., G. Amy, and J. Pellegrino, “Membrane Filtration of Natural Organic Matter: Factors and Mechanisms Affecting Rejection and Flux Decline with Charged Ultrafiltration (UF) Membrane,” Journal of Membrane Sciences, Vol. 164, Nos. 1-2, pp.89-110 (2000).
Comerton, A. M., R. C. Andrews, and D. M. Bagley, “The Influence of Natural Organic Matter and Cations on Fouled Nnanofiltration Membrane Effective Molecular Weight Cut-Off,” Journal of Membrane Science, Vol. 327, Nos. 1-2, pp. 155-163 (2009).
Dalton, S. K., J. A. Brant, and M. R. Wiesner, “Chemical Interactions Between Dissolved Organic Matter and Low-Molecular Weight Organic Compounds: Impacts on Membrane Separation,” Journal of Membrane Science, Vol. 266, Nos. 1-2, pp. 30-39 (2005).
Daneshvar, A., K. Aboulfadl, L. Viglino, R. Broséus, S. Sauvé, A. S. Madoux-Humery, G. A. Weyhenmeyer, and M. Prévost, “Evaluating Pharmaceuticals and Caffeine as Indicators of Fecal Contamination in Drinking Water Sources of the Greater Montreal Region,” Chemosphere, Vol. 88, No. 1, pp. 131-139 (2012).
Daughton, C. G. and T. A. Ternes, “Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change?” Environmental Health Perspectives, Vol. 107, No. 6, pp. 907-938 (1999).
Derringer, G. and R. Suich, “Simultaneous Optimization of Several Response Variables,” Journal of Quality Technology, Vol. 12, pp. 214-219 (1980).
Diener, H. C., J. P. Jansen, A. Reches, J. Pascual, D. Pitei, and T. J. Steiner, “Efficacy, Tolerability and Safety of Oral Eletriptan and Ergotamine Plus Caffeine (Cafergot) in the Acute Treatment of Migraine: A Multicentre, Randomised, Double-Blind, Placebo-Controlled Comparison,” European Neurology, Vol, 43, No. 2, pp. 299-308 (2002).
Drewes, J. E., C. Bellona, M. Oedekoven, P. Xu, T. U. Kim, and G. Amy, “Rejection of Wastewater-Derived Micropollutants in High-Pressure Membrane Applications Leading to Indirect Potable Reuse,” Environmental Progress, Vol. 24, No. 4, pp. 400-409 (2005).
Field, J. A., C. A. Johnson, J. B. Rose, and G. Editorset, “What is “emerging”?” Environmental Science and Technology, Vol. 40, No. 23, pp. 7105-7105 (2006).
Göbel, A., A. Thomsen, C. S. McArdell, A. C. Alder, W. Giger, N. Theiss, D. Löffler, and T. A. Ternes, “Extraction and Determination of Sulfonamides, Macrolides, and Trimethoprim in Sewage Sludge,” Journal of Chromatography A, Vol. 1085, No. 2, pp. 179-189 (2005).
Golet, E. M., A. Strehler, I. Xifra, H. Siegrist, A. C. Alder, and W. Giger, “Environmental Exposure Assessment of Fluoroquinolone Antibacterial Agents from Sewage to Soil,” Environmental science and Technology, Vol. 37, No. 15, pp. 3243-3249 (2003).
Gómez, M. J., M. J. Martínez Bueno, S. Lacorte, A. R. Fernández-Alba, and A. Agüera, “Pilot Survey Monitoring Pharmaceuticals and Related Compounds in a Sewage Treatment Plant Located on the Mediterranean Coast,” Chemosphere, Vol. 66, No. 6, pp. 993-1002 (2007).
Gros, M., M. Petrovic, and D. Barcelo, “Wastewater Treatment Plants as a Pathway for Aquatic Contamination by Parmaceuticals in the Ebro River Basin (Northeast Spain),” Environmental Toxicology and Chemistry, Vol. 26, No. 8, pp. 1553-1562 (2007).
Gulkowska, A., H. W. Leung, M. K. So, S. Taniyasu, N. Yamashita, L. W. Y. Yeung, B. J. Richardson, A. P. Lei, J. P. Giesy, and P. K. S. Lam, “Removal of Antibiotics from Wastewater by Sewage Treatment Facilities in Hong Kong and Shenzhen, China,” Water Research, Vol. 42, Nos. 1-2, pp. 395-403 (2008).
Gultekin, I. and N. H. Ince, “Synthetic Endocrine Disruptors in the Environment and Aater Remediation by Advanced Oxidation Processes,” Journal of Environmental Management, Vol. 85, No. 4, pp. 816-832 (2007).
He, Y. J., W. Chen, X. Y. Zheng, X. N. Wang, and X. Huang, “Fate and Removal of Typical Pharmaceuticals and Personal Care Products by Three Different Treatment Processes,” Science of The Total Environment, Vol. 447, No.1, pp. 248-254 (2013).
Heberer, T., “Tracking Persistent Pharmaceutical Residues from Municipal Sewage to Drinking Water,” Journal of Hydrology, Vol. 266, Nos. 3-4, pp. 175-189 (2002).
Hedgespeth, M. L., Y. Sapozhnikova, P. Pennington, A. Clum, A. Fairey, and E. Wirth, “Pharmaceuticals and Personal Care Products (PPCPs) in Treated Wastewater Discharges into Charleston Harbor, South Carolina” Science of the Total Environment, Vol. 437, No. 15, pp. 1-9 (2012).
Hermia, J., “Constant Pressure Blocking Filtration Laws—Application to Power-Law Non-Newtonian Fluids,” Institution of Chemical Engineers, Vol. 60, Nos. 1-2, pp. 183-187 (1982).
Hess, R. A., D. Bunick, K. H. Lee, J. Bahr, J. A. Taylor, K. S. Korach, and D. B. Lubahn, “A Role for Oestrogens in the Male Reproductive System,” Nature, Vol. 390, No. 4, pp. 509-512 (1997).
Hijosa-Valsero, M., V. Matamoros, J. Martín-Villacorta, E. Bécares, and J. M. Bayona, “Assessment of Full-Scale Natural Systems for the Removal of PPCPs from Wastewater in Small Communities,” Water Research, Vol. 44, No. 5, pp. 1429-1439 (2010).
Huang, P., N. Xu, J. Shi, and Y. S. Lin, “Characterization of Asymmetric Ceramic Membranes by Modified Permporometry,” Journal of Membrane Science, Vol. 116, No. 2, pp. 301-305 (1996).
Huotari, H. M., I. H. Huisman, and G. Trägårdh, “Electrically Enhanced Crossflow Membrane Filtration of Oily Waste Water Using the Membrane As a Cathode,” Journal of Membrane Science, Vol. 156, No. 1, pp. 49-60 (1999).
Huschek, G., P. D. Hansen, H. H. Maurer, D. Krenger, and A. Kayser, “Environmental Risk Assessment of Medicinal Products for Human Use According to European Commission Recommendations,” Environmental Toxicology, Vol. 19, No. 3, pp. 226-240 (2004).
Jagannadh, S. N. and H. S. Muralidhara, “Electrokinetics Methods to Control Membrane Fouling,” Industrial and Engineering Chemistry Research, Vol. 35, No. 4, pp. 1133-1140 (1996).
Jones, O. A. H., N. Voulvoulis, and J. N. Lester, “Aquatic Environmental Assessment of the Top 25 English Prescription Pharmaceuticals,” Water Research, Vol. 36, No. 20, pp. 5013-5022 (2002).
Jones, O. A., J. N. Lester, and N. Voulvoulis, “Pharmaceuticals: A Threat to Drinking Water?” Trends in Biotechnology, Vol. 23, No. 4, pp. 163-167 (2005).
Kabengi, N. J. and A. Thompson, “The Emerging Emphasis on Nanometer-Scale Process in Soil Environments,” Soil Science Society of America, Vol. 75, No. 2, pp. 333-334 (2011).
Kasprzyk-Hordern, B., R. M. Dinsdale, and A. J. Guwy, “The Removal of Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs during Wastewater Treatment and Its Impact on the Quality of Receiving Waters,” Water Resesrch, Vol. 43, No. 2, pp. 368-380 (2009).
Kim, S. D., J. Cho, I. S. Kim, B. J. Vanderford, and S. A. Snyder, “Occurrence and Removal of Pharmaceuticals and Endocrine Disruptors in South Korean Surface, Drinking, and Waste Waters,” Water Research, Vol. 41, No. 5, pp. 1013-1021 (2007).
Kimura, K., G. Amy, J. E. Drewes, and Y. Watanabe, “Adsorption of Hydrophobic Compounds onto NF/RO Membranes: An Artifact Leading to Overestimation of Rejection,” Journal of Membrane Science, Vol. 221, Nos. 1-2, pp. 89-101 (2003a).
Kimura, K., G. Amy, J. E. Drewes, T. Heberer, T. U. Kim and Y. Watanabe, “Rejection of Organic Micropollutants (Disinfection by-Products, Endocrine Disrupting Compounds, and Pharmaceutically Active Compounds) by NF/RO Membranes,” Journal of Membrane Science, Vol. 227, Nos. 1-2, pp. 113-121 (2003b).
Kimura, K., S. Toshima, G. Amy, and Y. Watanabe, “Rejection of Neutral Endocrine Disrupting Compounds (EDCs) and Pharmaceutical Active Compounds (PhACs) by RO Membranes,” Journal of Membrane Science, Vol. 245, Nos. 1-2, pp. 71-78 (2004).
Kiso, Y., Y. Nishimura, T. Kitao, and K. Nishimura, “Rejection Properties of Non-Phenylic Pesticides with Nanofiltration Membranes,” Journal of Membrane Science, Vol. 171, No. 2, pp. 229-237 (2000).

Koyuncu, I., O. A. Arikan, M. R. Wiesner, and C. Rice, “Removal of Hormones and Antibiotics by Nanofiltration Membranes,” Journal of Membrane Science, Vol. 309, Nos. 1-2, pp. 94-101 (2008).
Krishnan, A. V., P. Stathis, S. F. Permuth, L. Tokers, and D. Feldman, “Bisphenol-A: An Estrogenic Substance Is Released from Polycarbonate Flasks during Autoclaving,” Endocrinology, Vol. 132, No. 6, pp. 2279-2286 (1993).
Lapworth, D. J., N. Baran, M. E. Stuart, and R. S. Ward, “Emerging Organic Contaminants in Groundwater: A Review of Sources, Fate and Occurrence,” Environmental Pollution, Vol. 163, pp. 287-303 (2012).
Larry, D. B., J. F. Jukins, and B. L. Weand, “Process Chemistry for Water and Wastewater Treatment,” Prentice-Hall, New Jersey, USA (1982).
Lei, H. and S. A. Snyder, “3D QSPR Models for the Removal of Trace Organic Contaminants by Ozone and Free Chlorine,” Water Research, Vol. 41, No. 18, pp. 4051-4060 (2007).
Li, Y. Y., S. D. Bae, A. Sakoda, and M. Suzuki, “Formation of Vapor Grown Carbon Fibers with Sulfuric Catalyst Precursors and Nitrogen as Carrier Gas,” Carbon, Vol. 39, No. 1, pp. 91-100 (2001).

Li, Y. Y., T. Nomura, A. Sakoda, and M. Suzuki, “Fabrication of Carbon Coated Ceramic Membranes by Pyrolysis of Methane Using a Modified Chemical Vapor Deposition Apparatus,” Journal of Membrane Science, Vol. 197, Nos. 1-2, pp. 23-35 (2002).
Li, F. B., X. Z. Li, C. S. Liu, and T. X. Liu, “Effect of Alumina on Photocatalytic Activity of Iron Oxides for Bisphenol A Degradation,” Journal of Hazardous Materials, Vol. 149, No. 1, pp. 199-207 (2007).
Li, S. X., D. Wei, N. K. Mak, Z. W. Cai, X. R. Xu, H. B. Li, and Y. Jiang, “Degradation of Diphenylamine by Persulfate: Performance Optimization, Kinetics and Mechanism,” Journal of Hazardous Materials, Vol. 164, No. 1, pp. 26-31 (2009).
Li, B. and T. Zhang, “Mass Flows and Removal of Antibiotics in Two Municipal Wastewater Treatment Plants,” Chemosphere, Vol. 83, No. 9, pp. 1284-1289 (2011).
Lin, Y. L., P. C. Chiang, and E. E. Chang, “Removal of Small Trihalomethane Precursors from Aqueous Solution by Nanofiltration,” Journal of Hazardous Materials, Vol. 146, Nos. 1-2, pp. 20-29 (2007).
Lin, A. Y. C., T. H. Yu, and C. F. Lin, “Pharmaceutical Contamination in Residential, Industrial, and Agricultural Waste Streams: Risk to Aqueous Environments in Taiwan,” Chemosphere, Vol. 74, No. 1, pp. 131-141 (2008).
Lishman, L., S. A. Smyth, K. Sarafin, S. Kleywegt, J. Toito, T. Peart, B. Lee, M. Servos, M. Beland, and P. Seto, “Occurrence and Reductions of Pharmaceuticals and Personal Care Products and Estrogens by Municipal Wastewater Treatment Plants in Ontario, Canada,” Science of the Total Environment, Vol. 367, Nos. 2-3, pp. 544-558 (2006).
Magara, Y., S. Kunikane, and M. Itoh, “Advanced Membrane Technology for Application to Water Treatment,” Water Science and Technology, Vol. 37, No. 10, pp. 91-99 (1998).
Matamoros, V., C. Arias, H. Brix, and J. M. Bayona, “Removal of Pharmaceuticals and Personal Care Products (PPCPs) from Urban Wastewater in a Pilot Vertical Flow Constructed Wetland and a Sand Filter,” Environmental Science and Technology, Vol. 41, No. 23, pp. 8171-8177 (2007).
Matamoros, V., C. Arias, H. Brix, H, Brix, and J. M. Bayona, “Preliminary Screening of Small-Scale Domestic Wastewater Treatment Systems for Removal of Pharmaceutical and Personal Care Products,” Environmental Science and Technology, Vol. 43, No. 1, pp. 55-62 (2009).
McArdell, C. S., E. Molnar, M. J. F. Suter, and W. Giger, “Occurrence and Fate of Macrolide Antibiotics in Wastewater Treatment Plants and in the Glatt Valley Watershed, Switzerland,” Environmental Science and Technology, Vol. 37, No. 24, pp. 5479-5486 (2003).
McCallum, E. A., H. Hyung, T. A. Do, C. H. Huang, and J. H. Kim, “Adsorption, Desorption, and Steady-State Removal of 17β-estradiol by Nanofiltration Membranes, ” Journal of Membrane Science, Vol. 319, Nos. 1-2, pp. 38-43 (2008).
Miao, X. S., F. Bishay, M. Chen, and C. D. Metcalfe, “Occurrence of Antimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada,” Environmental Science and Technology, Vol. 38, No. 13, pp. 3533-3541 (2004).
Miège, C., J. M. Choubert, L. Ribeiro, M. Eusèbe, and M. Coquery, “Fate of Pharmaceuticals and Personal Care Products in Wastewater Treatment Plants - Conception of a Database and First Results,” Environmental Pollution, Vol. 157, No. 5, pp. 1721-1726 (2009).
Mohammadi, T., M. Kazemimoghadam, and M. Saadabadi, “Modeling of Membrane Fouling and Flux Decline in Reverse Osmosis during Separation of Oil Water Emulsions,” Desalination, Vol. 157, Nos. 1-3, pp. 369-375 (2003).
Mollah, M. Y. A., R. Schennach, J. R. Parga, and D. L. Coake, “Electrocoagulation (EC)-Science and Applications,” Journal of Hazardous Materials, Vol. 84, No. 1, pp. 29-41 (2001).
Neamtu, M. and F. H. Frimmel, “Photodegradation of Endocrine Disrupting Chemical Nonylphenol by Simulated Solar UV-Irradiation,” Science of the Total Environment, Vol. 369, Nos. 1-3, pp. 295-306 (2006).
Nghiem, L. D., A. I. Schafer, and T. D. Waite, “Adsorptive Interactions between Membranes and Trace Contaminants,” Desalination, Vol. 147, Nos. 1-3, pp. 269-274 (2002).
Nghiem, L. D., A. Manis, K. Soldenhoff, and A.I. Schäfer, “Estrogenic Hormone Removal from Wastewater Using NF/RO Membranes,” Journal of Membrane Science, Vol. 242, Nos.1-2, pp. 37-45 (2004).
Nghiem, L. D., A. I. Schäfer, and M. Elimelech, “Pharmaceutical Retention Mechanisms by Nanofiltration Membranes,” Environmental Science and Technology, Vol. 39, No. 19, pp. 7698-7705 (2005).
Nghiem, L. D., A. I. Schäfer, and M. Elimelech, “Role of Electrostatic Interactions in the Retention of Pharmaceutically Active Contaminants by a Loose Nanofiltration Membrane,” Journal of Membrane Science, Vol. 286, Nos. 1-2, pp. 52-59 (2006).
Nghiem, L. D. and S. Hawkes, “Effects of Membrane Fouling on the Nanofiltration of Pharmaceutically Active Compounds (PhACs): Mechanisms and Role of Membrane Pore Size,” Separation and Purification Technology, Vol. 57, No. 1, pp. 176-184 (2007).
Nghiem, L. D. and P. J. Coleman, “NF/RO Filtration of the Hydrophobic Ionogenic Compound Triclosan: Transport Mechanisms and the Influence of Membrane Fouling,” Separation and Purification Technology, Vol. 62, No. 3, pp. 709-716 (2008).
Oh, B. S., H. Y. Jang, T. M. Hwang, and J. K. Kang,” Role of Ozone for Reducing Fouling due to Pharmaceuticals in MF (Microfiltration) Process,” Journal of Membrane Science, Vol. 289, Nos. 1-2, pp. 178-186 (2007).
Ohko, Y., I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakashima, Y. Kubota, and A. Fujishima, “Degradation of Bisphenol A in Water by TiO2 Photocatalyst,” Environmental Science and Technology, Vol. 35, No. 11, pp. 2365-2368 (2001).
Okuda, T., Y. Kobayashi, R. Nagao, N. Yamashita, H. Tanka, S. Fujii, C. Konishi, and I. Houwa, “Removal Efficiency of 66 Pharmaceuticals during Wastewater Treatment Process in Japan,” Water science and Technology, Vol. 57, No. 1, pp. 65-71 (2008).
Ozaki, H. and H. Li, “Rejection of Organic Compounds by Ultra-Low Pressure Reverse Osmosis Membrane,” Water Research, Vol. 36, No. 1, pp. 123-130 (2002).
Perry, R. H., D. W. Green, and J. O. Maloney, “Perry’s Chemical Enginner’s Handbook,” 7th edition, McGraw-Hill, New York (1997).
Pisarenko, A. N., B. D. Standford, D. Yan, D. Gerrity, and S. A. Snyder, “Effects of Ozone and Ozone/Peroxide on Trace Organic Contaminants and NDMA in Drinking Water and Water Reuse Applications,” Water Research, Vol. 46, No. 2, pp. 316-326 (2012).
Plakas, K. V., A. J. Karabelas, T. Wintgens, and T. Melin, “A Study of Selected Herbicides Retention by Nanofiltration Membranes-The Role of Organic Fouling,” Journal of Membrane Science, Vol. 284, Nos. 1-2, pp. 291-300 (2006).
Radjenović, J., M. Petrović, F. Ventura, and D. Barceló, “Rejection of Pharmaceticals in Nanofiltration and Reverse Osmosis Membrane Drinking Water Treatment,” Water Research, Vol. 42, No. 14, pp. 3601-3610 (2008).
Rahman, M. F., E. K. Yanful, and S. Y. Jasim, “Endocrine Disrupting Compounds (EDCs) and Pharmaceuticals and Personal Care Products (PPCPs) in the Aquatic Environment: Implications for the Drinking Water Industry and Global Environmental Health, ” Journal of Water and Health, Vol. 07, No. 2, pp. 224-243 (2009).
Richardson, S. D. and T. A. Ternes, “Water Analysis: Emerging Contaminants and Current Issues,” Analytical Chemistry, Vol. 83, No. 12, pp. 4614-4648 (2011).
Richardson, S. D., “Environmental Mass Spectrometry: Emerging Contaminants and Current Issues,” Analytical Chemistry, Vol. 84, No. 2, pp. 747-778 (2012).
Roberts, P. H. and K. V. Thomas, “The Occurrence of Selected Pharmaceuticals in Wastewater Effluent and Surface Waters of the Lower Tyne Catchment,” Science of the Total Environment, Vol. 356, Nos. 1-3, pp. 143-153 (2006).
Ryu, J., Y. Yoon, and J. Oh, “Occurrence of Endocrine Disrupting Compounds and Pharmaceuticals in 11 WWTPs in Seoul, Korea,” Journal of Civil Engineering, Vol. 15, No. 1, pp. 57-64 (2011).
Sakoda, A., T. Nomura, and M. Suzuki, “Activated Carbon Membrane for Water Treatments: Application to Decolorization of Coke Furnace Wastewater,” Adsorption, Vol. 3, No. 1, pp. 93-98 (1996).
Shemer, H., Y. K. Kunukcu, and K. G. Linden, “Degradation of the Pharmaceutical Metronidazole via UV, Fenton and Photo-Fenton Processes,” Chemosphere, Vol. 63, No. 2, pp. 269-276 (2006).
Shirazi, S., C. J. Lin, and D. Chen, “Inorganic Fouling of Pressure-Driven Membrane Processes - A Critical Review,” Desalination, Vol. 250, No. 1, pp. 236-248 (2010).
Snyder, S., B. Vanderford, R. Pearson, O. Quiñones, and Y. Yoon, “Analytical Methods Used to Measure Endocrine Disrupting Compounds in Water,” Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, Vol. 7, No. 4, PP. 224-234 (2003).
Spongberg, A. L. and J. D. Witter, “Pharmaceutical Compounds in the Wastewater Process Stream in Northwest Ohio,” Science of the Total Environment, Vol. 397, Nos. 1-3, pp. 148-157 (2008).
Steinle-Darling, E., E. Litwiller, and M. Reinhard, “Effects of Sorption on the Rejection of Trace Organic Contaminants During Nanofiltration,” Environmental Science and Technology, Vol. 44, No. 7, pp. 2592-2598 (2010).
Sui, Q., J. Huang, S. Deng, W. Chen, and G. Yu, “Seasonal Variation in the Occurrence and Removal of Pharmaceuticals and Personal Care Products in Different Biological Wastewater Treatment Processes,” Environmental Science and Technology, Vol. 45, No. 8, pp. 3341-3348 (2011).
Tang, C. Y., Y. N. Kwon, and J. O. Leckie, “Fouling of Reverse Osmosis and Nanofiltration Membranes by Humic Acid—Effects of Solution Composition and Hydrodynamic Conditions,” Journal of Membrane Science, Vol. 290, Nos. 1-2, pp. 86-94 (2007).
Tivol, E. A., F. Borriello, A. N. Schweitzer, W. P. Lynch, J. A. Bluestone, and A. H. Sharpe, “Loss of CTLA-4 Leads to Massive Lymphoproliferation and Fatal Multiorgan Tissue Destruction, Revealing a Critical Negative Regulatory Role of CTLA-4,” Immunity, Vol. 3, No. 5, pp. 541-547 (1995).
van der Bruggen, B., J. Schaep, D. Wilms, and C. Vandecasteele, “Influence of Molecular Size, Polarity and Charge on the Rejection of Organic Molecules by Nanofiltration,” Journal of Membrane Science, Vol. 156, No. 1, pp.29-41, (1999).
Verliefde, A. R. D., S. G. J. Heijman, E. R. Cornelissen, G. Amy, B. van der Bruggen, and J. C. van Dijk, “Influence of Electrostatic Interactions on the Rejection with NF and Assessment of the Removal Efficiency during NF/GAC Treatment of Pharmaceutically Active Compounds in Surface Water,” Water Research, Vol. 41, No. 15, pp. 3227-3240 (2007).
Wakeman, R. J. and C. J. Williams, “Additional Techniques to Improve Microfiltration,” Separation and Purification Technologh, Vol. 26, No. 1, pp. 3-18 (2002).
Wang, L., C. Albasi, V. Faucet-Marquis, A. Pfohl-Leszkowicz, C. Dorandeu, B. Marion, and C. Causserand, “Cyclophosphamide Removal from Water by Nanofiltration and Reverse Osmosis Membrane,” Water Research, Vol. 43, No. 17, pp. 4115-4122 (2009).
Watkinson, A. J., E. J. Murby, D. W. Kolpin, and S. D. Costanzo, “Removal of Antibiotics in Conventional and Advanced Wastewater Treatment: Implications for Environmental Discharge and Wastewater Recycling,” Science of the Total Environment, Vol. 41, No. 18, pp. 4164-4176 (2007).
Weigert, T., J. Altmann, and S. Reppeerger, “Crossflow Elecro-filtration in Pilot Scale,” Journal of Membrane Science, Vol. 159, Nos. 1-2, pp. 253-262 (1999).
Xu, P., J. E. Drewes, T. U. Kim, C. Bellona, and G. Amy, “Effect of Membrane Fouling on Transport of Organic Contaminants in NF/RO Membrane Applications,” Journal of Membrane Science, Vol. 279, Nos. 1-2, pp. 165-175 (2006).
Xu, W., G. Zhang, X. Li, S. Zou, C. Li, Z. Hu, and J. Li, “Occurrence and Elimination of Antibiotics at Four Sewage Treatment Plants in the Pearl River Delta (PRD), South China,” Water Research, Vol. 41, No. 19, pp. 4526-4534 (2007).
Yang, B., G. G. Ying, J. L. Zhao, S. Liu, L. J. Zhou, and F. Chen, “Removal of Selected Endocrine Disrupting Chemicals (EDCs) and Pharmaceuticals and Personal Care Products (PPCP s) During Ferrate(VI) Treatment of Secondary Wastewater Effluents,” Water Research, Vol. 46, No. 7, pp. 2194-2204 (2012).
Yang, G. C. C. and C. M. Tsai, “Preparation of Carbon Fibers/Carbon/Alumina Tubular Composite Membranes and Their Applications in Treating Cu-CMP Wastewater by a Novel Electrochemical Process,” Journal of Membrane Science, Vol. 321, No. 2, pp. 232-239 (2008).
Yang, G. C. C. and C. H. Yen, “Treatment of Acetaminophen and Erythromycin in Sewage by the Simultaneous Electrocoagulation/Electrofiltration Process Using Tubular Carbonaceous/Ceramic Composite Membranes,” Procedure 4th IWA-ASPIRE Conference Exhibition, October 2-6, 2011, Tokyo, Japan.
Yang, G. C. C. and C. H. Yen, “The Use of Different Materials to form the Intermediate Layers of Tubular Carbon Nanofibers/Carbon/Alumina Composite Membranes for Removing Pharmaceuticals from Aqueous Solutions,” Journal of Membrane Science, Vol. 425-426, No. 1, pp. 121-130 (2013).
Yoon, Y., P. Westerhoff, S. A. Snyder, and E. C. Wert, “Nanofiltration and Ultrafiltration of Endocrine Disrupting Compounds, Pharmaceuticals and Personal Care Products,” Journal of Membrane Science, Vol. 270, Nos. 1-2, pp. 88-100 (2006).
Yu, Z., S. Peldszus, and P. M. Huck, “Adsorption Characteristics of Selected Pharmaceuticals and an Endocrine Disrupting Compound-Naproxen, Carbamazepine and Nonylphenol-on Activated Carbon,” Water Research, Vol. 42, No. 12, pp. 2873-2882 (2008).

Zazouli, M. A., H. Susanto, S. Nasseri, and M. Ulbricht, “Influences of Solution Chemistry and Polymeric Natural Organic Matter on the Removal of Aquatic Pharmaceutical Residuals by Nanofiltration,” Water Research, Vol. 43, No. 13, pp. 3270-3280 (2009).
Zhang, Y., B. van der Bruggen, G. X. Chen, L. Breaken, and C. Vandecasteele, “Removal of Pesticides by Nanofiltration: Effect of the Water Matrix,” Separation and Purification Technology, Vol. 38, No. 2, pp. 163-172 (2004).
Zhang, J., M. Yang, Y. Zhang, and M. Chen, “Biotransformation of Nonylphenol Ethoxylates during Sewage Treatment under Anaerobic and Aerobic Conditions,” Journal of Environmrntal Sciences, Vol. 20, No. 2, pp. 135-141 (2008).
Zoeller, R. T., T. R. Brown, L. L. Doan, A. C. Gore, N. E. Skakkebaek, A. M. Soto, T. J. Woodruff, and F. S. V. Saal, “Endoceine-Disrupting Chemicals and Public Health Protection: A Statement of Principles from The Endocrine Society,” Endocrinology, Vol. 153, No. 9, pp. 4097-4110 (2012).
Zwiener, C., “Occurrence and Analysis of Pharmaceuticals and Their Transformation Products in Drinking Water Treatment,” Analytical and Bioanalytical Chemistry, Vol. 387, No. 4, pp. 1159-1162 (2007).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code