Responsive image
博碩士論文 etd-0728114-124346 詳細資訊
Title page for etd-0728114-124346
論文名稱
Title
以化學去合金法從銀鋁合金製作奈米孔洞銀
Microstructure and properties of nanoporous silver fabricated by chemical dealloying of Ag-Al alloys
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-17
繳交日期
Date of Submission
2014-08-28
關鍵字
Keywords
銀、奈米孔洞、機械性質、抗菌、硬度、電阻
mechanical response, hardness, resistivity, Antimicrobial test, Ag, Nanoporous foam
統計
Statistics
本論文已被瀏覽 5762 次,被下載 460
The thesis/dissertation has been browsed 5762 times, has been downloaded 460 times.
中文摘要
在這個研究,我們利用熔融法製作三種成分銀鋁的薄帶,利用化學腐蝕方法可得到奈米孔洞銀,Ag30Al70 跟另外兩種成分別坐落在共晶點兩邊,A30Al70坐落在鋁成分較高的那一側,另外兩個成分則在鋁成分較少的一側。成分的差異會影響腐蝕前微結構、晶粒結構以及腐蝕後的孔洞形貌。銀鋁薄帶只存在鋁和Ag2Al,透過鹽酸腐蝕後,Ag2Al和鋁會被腐蝕掉,剩下純銀的枝條。得到的奈米孔洞材料會利用XRD、SEM、BET、微硬度機、奈米壓痕。Ag30Al70、Ag35Al65、Ag40Al60 經過腐蝕後所得到的孔洞大小分別是500、300和100奈米。孔洞率分別是 69%、66%、58%,比表面積則是4.1、3.9和2.3 m2/g,隨著孔洞率下降,比表面積也跟著下降。利用微硬度機得到的硬度分別是2.4、2.9和4.5 Hv。 利用奈米壓痕測試得到楊氏模數和硬度分別是521、620、916 MPa和 26、32、43 MPa,隨著孔洞率上升,剛性與硬度下降。經過四點探針測試,電阻是隨著孔洞率成指數上升。在抗菌測試中,奈米孔洞銀並沒有比銀薄膜和銀薄帶有較好的表現,原因是細菌無法進到孔洞內,降低了奈米孔洞銀的抗菌能力。

關鍵字: 奈米孔洞,銀,機械性質,硬度,電阻,抗菌
Abstract
The pure Ag nanoporous foams are prepared by simple chemical dealloying of the melt spun Ag30Al70, Ag35Al65, and Ag40Al60 (in at%) ribbons, measuring ~8 mm in width and ~100 m in thickness. Ag30Al70 is located with the Al content greater than the eutectic composition, and the other two are less than the eutectic point. The composition difference would affect the microstructure and grain structure before dealloying and the porous morphology after dealloying. The melt-spun ribbons contain only the face-centered cubic (FCC) -Ag phase and the hexagonal -Ag2Al intermediate phase. Through proper chemical dealloying in HCl, the -Ag2Al phase would be etched away, leaving the pure Ag ligaments. The resulting open-cell foams are characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) in terms of secondary and backscattered electron image (SEI and BEI) and energy dispersive spectrometry (EDS), as well as Brunauer Emmet and Teller (BET), Vickers microhardness, nanoindentation, mini-tension, and other means for their functional properties. In this report, the mechanical response is presented. The three pure Ag open-cellporous foams dealloyed from Ag30Al70, Ag35Al65, and Ag40Al60 possess the average pore size and of 500, 300 and 100 nm, respectively. Pore porosity is 69%, 66%, 58%, respectively. The specific surface area, measured by BET, is 4.1, 3.9 and 2.3 m2/g, respectively. The surface area decreases with decreasing pore porosity. The average micro-hardness readings for these three foams are 2.4, 2.9 and 4.5 Hv. Based on nanoindentation measurements. The elastic modulus data of these three foams are 521, 620, 916 MPa and the hardness data of these three foams are 26, 32, 43 MPa, respectively. The modulus and hardness both decrease with increasing pore porosity. Ag nano-porous foams were characterized by four point probe, and the resistivity increases exponentially with increasing pore porosity. In antimicrobial testing, Ag thin film and Ag ribbon (both without nano-pores) have better antimicrobial ability than Ag nano-porous foams. The current pore size in the Ag nano-porous foams appears too small for bacteria to penetrate, reducing the antimicrobial capability.

Keywords: Nanoporous foam, Ag, mechanical response, hardness, resistivity, Antimicrobial test
目次 Table of Contents
論文審定書……...……………………………………………………………………………..i
致謝………... ………………………………………………………………………………….ii
中文摘要…………………………………………………….…………………………………v
Abstract………………………………………………………………………………….......vi
Table of content……………………………………………………………...…………...….vii
List of Tables…………………………………………………………………………..........xii
List of Figures……………………………………………………………...………...……..xiii


Chapter 1 Introduction 1
1.1 Nanoporous noble materials 1
1.2 The structure of the nanoporous materials 2
1.3 Motivation 3
Chapter 2 Background and literature review 5
2.1 Corrosion 5
2.1.1 Introduction 5
2.1.2 The corrosion behavior of Ag-Al alloys 6
2.2 Dealloying 7
2.3 Properties of nanoporous materials 11
2.3.1 Mechanical properties 11
2.3.2 Double diffraction 14
2.3.3 Surface enhanced Raman scattering (SERS) 14
2.3.4 Antimicrobial activity 16
2.3.5 Catalysts properties 17
2.4 Specific surface area and pore size distribution analyzer, BET 18
Chapter 3 Experimental procedures 20
3.1 Sample preparation 20
3.1.1 Raw material 20
3.1.2 Arc melting 20
3.1.3 Suction casting 21
3.1.4 Melt spinning 22
3.2 Property measurements and analyses 23
3.2.1 X-ray diffraction (XRD) 23
3.2.2 Qualitative and quantitative composition analyses 24
3.2.3 Chemical analysis 24
3.2.4 Scanning electron microscopy 24
3.2.5 BET test 25
3.2.6 Vicker’s hardness 25
3.2.7 Nanoindentation 26
3.2.8 Four point probe 26
3.2.9 Photometer 27
3.3 Antimicrobial testing 27
3.3.1 Ultraviolet-visible spectroscopy 28
3.3.2 Catalysts evaluation 28
Chapter 4 Results and discussion 30
4.1 XRD analysis of the as cast ribbons 30
4.2 Composition and grain structure of the as-cast ribbons 30
4.3 Chemical dealloying 32
4.4 Microstructure and phase of the dealloyed nano-porous foams 32
4.5 Porosity and surface area analyses 34
4.6 Micro-Vicker’s hardness Hv 35
4.7 Nanoindentation 37
4.8 Resistivity evaluation 38
4.9 Antinicrobial evaluation 39
4.10 Catalysts evaluation 40
4.11 Overall application concerns 41

Chapter 5 Conclusion 43
References………….. 45
Tables………. 49
Figures……… 55
參考文獻 References
[1] 奚正平. 張文彥, 方明, 李亞寧, 李廣忠, 張龍, 稀有金屬材料與工程, 37 (2008) 1130-1133.
[2] Jonah Erlebacher, Alain Karma, Nicolay Dimitrov, Karl Sieradzki, Nature, 410 (2001) 450-453.
[3] Guijing Li, Zhanbo Sun, Shengchun Yang, Bingjun Ding, Sen Yang, Zhimao Yang, Fei Wang, Solid State Sciences, 13 (2011) 1379-1384.
[4] Xiaoguang Wang, Changchun Zhao, Weimin Wang, Zhonghua Zhang, J. Phys. Chem. C, 113 (2009) 13139-13150.
[5] Hai-Bo Lu, Fu-Hui Wang, Journal of Alloys and Compounds, 465 (2008) 139-144.
[6] 柯賢文, 腐蝕及其防治, 全華科技圖書股份有限公司, 新北市, 中華民國 (2006).
[7] Robbie Kevin, Brown Tim, Dean Cory, Adams Jonathan, Buzea Cristina, Review of Instruments, 75 (2004) 1089-1097.
[8] G. Tammann, Journal of Inorganic and General Chemistry, 107 (1919) 1-239.
[9] G. Masing, Journal of Inorganic and General Chemistry, 118 (1921) 293-308.
[10] A. J. Forty, Philosophical Magazine A, 42 (1980) 295-318.
[11] C. E. Wen, Y. Yamada, K. Shimojima, Y. chino, T. Asahina, Scripta Materialia 45 (2001) 1147-1153.
[12] B.J.P. J. Jayaraj, D.H. Kim, W.T. Kimc, E. Fleurya, Scripta Materialia, 55 (2006) 1063–1066.
[13] B. X. Lu, R. Spolenak, E. Arzt a, Thin Solid Films, 515 (2007) 7122–7126.
[14] Zhonghua Zhang, Zhen Qi, Christoph Somsen, Xiaoguang Wanga, Changchun Zhaoa, Journal of Materials Chemistry, 19 (2009) 6042-6050.
[15] Z. Zhang, Physical Chemistry Chemical Physics, 12 (2010) 1453-1472.
[16] Masataka Hakamada, Toshiyuki Furukawa, Mamoru Mabuchi, Applied Physics Letters, 94 (2009) 153105-153105-3.
[17] Zhonghua Zhang, Zhen Qi, Jikui Lin, Xiufang Bian, J. Phys. Chem. C, 113 (2009) 1308-1314.
[18] Zhonghua Zhang, Zhen Qi, Wenhua Zhang, Jingyu Qin, Jan Frenzel, J. Phys. Chem. C, 113 (2009) 12626-12636.
[19] Sai Hu, Zelin Li, Materials Letters, 64 (2010) 1257–1260.
[20] Ting Chena, Weijie Lua, Xingfeng Zhoua, Houyi Ma, Electrochemistry Communications, 13 (2011) 1086–1089.
[21] Chi Zhang, Junling Xu, Xiaoguang Wang, Hong Ji, Changchun Zhao, Zhonghua Zhang, Electrochimica Acta, 63 (2012) 302– 311.
[22] C. A. Volkert, D. Kramer and J. Weissmüller, Applied Physics Letters, 89 (2006) 061920-061920-3.
[23] Jianzhong Zhua, Hilary Bart-Smith, Matthew R. Begley, Robert G. Kelly, Giovanni Zangari, Whye-Kei Lye, Michael L. Reed, Applied Physics Letters, 89 (2006) 133104-133107.
[24] Rui Dou, Brian Derby, Scripta Materialia, 63 (2010) 308–311.
[25] Masataka Hakamada, Scripta Materialia, 56 (2007) 1003-1006.
[26] Re Xia, Qinghua Qin, Jianlin Liu, Xi-Qiao Feng, Nanotechnology, 22 (2011) 265714-265721.
[27] Tingting Song, Zhonghua Zhang, Qijie Zhai, CrystEngComm, 14 (2012) 3694-3701.
[28] I.-Chung Cheng, Scripta Materialia, 69 (2013) 295-298.
[29] Re Xia, Qinghua Qin, Jianlin Liu, Xi-Qiao Feng, Nanotechnology, 22 (2011) 265714-265721.
[30] Eric Detsi, Patrick R. Onck and Jeff Th. M. De Hosson, Scripta Materialia, 69 (2013) 195-198.
[31] H.C.L. J.B. Li, J.S.C. Jang, C.N. Kuoc, J.C. Huang, Materials Letters, 105 (2013) 140–143.
[32] 朱仁佑. 林鼎晸, 張祐嘉, 汪天仁, 蔡枝松, 葉吉田, 王俊凱, 工業材料雜誌, 261 (2008) 150-155.
[33] X. Y. Lang, L. Zhang, T. Fujita and M. W. Chen, J. Phys. Chem. C, 113 (2009) 10956-10961.
[34] Shu Chena, Jufang Zhengb, Zelin Li, Electrochimica Acta, 54 (2009) 1102–1108.
[35] J.M. Schierholz, L.J. Lucas, A. Rump, G. Pulverer, J. Hosp. Infect., 40 (1998) 257-262.
[36] I. Sondi, B. Salopek-Sondi, J. Coll. Interf. Sci., 275 (2004) 177-182. (2004) 1229-1232.
[37] A.E. J. Wahlberg, Health, 11 (1989) 201-203.
[38] R.L. Williams, D.F. Williams, Biomater., 9 (1988) 206-212.
[39] P. DeVasConCellos, S. Bose, H. Beyenal, A. Bandyopadhyay, L.G. Zirkle, Mater. Sci. Eng. C, 32 (2012) 1112-1120.
[40] C. Aymonier, U. Schlotterbeck, L. Antonietti, P. Zacharias, R. Thomann, J.C. Tiller, S. Mecking, Chem. Comm., 24 (2002) 3018-3019.
[41] J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho, Nanomed. Nanotechnol. Biol. Med., 3 (2007) 95-101.
[42] https://en.wikipedia.org/wiki/File:Gram-Cell-wall.svg#filehistory, Wikipedia, (2008)
[43] Zhong-Jie Jiang, Lu-Wei Sun, J. Phys. Chem., 109 (2005) 1730-1735.
[44] Ante Bilic, Noel S. Hush, Rainer C. Hoft, Michael J. Ford, Chemical theory and Computation, 2 (2006) 1093-1105.
[45] Y.D. Lin, master thesis, Block Copolymer-Templated Mesoporous Materials obtained by Evaporation-Induced Self Assembly, National Sun Yat-sen University (2011).
[46] http://www.rjghome.com/viewthread.php?tid=2243.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code