Responsive image
博碩士論文 etd-0728114-164039 詳細資訊
Title page for etd-0728114-164039
論文名稱
Title
結合摩擦攪拌製程與原位反應於鋁-鎂-氧化鋅系統製備奈米顆粒強化鋁基複合材料
Aluminum based in situ nanocomposite produced from Al-Mg-ZnO powder mixture by using friction stir processing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-08-19
繳交日期
Date of Submission
2014-08-29
關鍵字
Keywords
原位反應、摩擦攪拌製程、電子顯微鏡、鋁基奈米複合材料、鋁-鎂-氧化鋅
Metallic composites, Al-Mg-ZnO, in situ reaction, Friction stir processing, Electron microscopy
統計
Statistics
本論文已被瀏覽 5675 次,被下載 62
The thesis/dissertation has been browsed 5675 times, has been downloaded 62 times.
中文摘要
本次實驗研究旨在藉由摩擦攪拌製程所伴隨的大量塑性變形及摩擦熱,達到細化微結構並誘發原位反應,以製備奈米強化顆粒。
材料經過摩擦攪拌製程後,鋁晶粒呈等軸狀,晶粒尺寸可細化至1 μm。此製程所製備之鋁基奈米複合材料具有優良之機械性質,當晶粒平均徑為1.10±0.61 μm 時,固溶處理後,複合材料之降伏強度達351 MPa、最大抗拉強度為534 MPa,延伸率16.0%。
Abstract
Friction stir processing was used to fabricate the aluminum based in situ composite from powder mixture of Al-Mg-ZnO. In the Al-Mg-ZnO composites, MgO particles were produced in situ by oxide-aluminum displacement reactions. Microstructural observations revealed the average Al grain size in the FSPed composite was about 1.10±0.61 μm.
The composite exhibits superior mechanical strength due to the large amount of nanometer-sized reinforcements in a submicron-grained matrix
after heat treatment.
目次 Table of Contents
摘要………………………………………………………………i
Abstract........................................................................ii
目錄………………………………………………………………iii
表目錄……………………………………………………………….vi
圖目錄……………………………………………………………….viii
第一章 前言
1.1 研究背景……………………………………………………1
1.2 研究動機與目的……………………………………………4
第二章 文獻回顧
2.1 摩擦攪拌銲接(Friction Stir Welding, FSW).........................5
2.2 摩擦攪拌製程(Friction Stir Process, FSP)………................5
2.3 鋁基複合材料
2.3.1 傳統鋁基複合材料………………………6
2.3.2 原位鋁基複合材料……………………….8
第三章 實驗製程
3.1 實驗方法…………………………………………15
3.2 摩擦攪拌製程…………………………………15
3.3 巨觀結構與微觀組織分析
3.3.1 X光繞射分析…………………………………16
3.3.2 掃描式電子顯微鏡觀察及分析(SEM)....……17
3.3.3 背向散射電子繞射分析(EBSD)………........ 17
3.4 機械性質量測及分析
3.4.1 微硬度試驗…………………………………19
3.4.2 拉伸測試…………………………………………19
3.5 試片命名………………………………………………19
第四章 實驗結果
4.1 X光繞射分析…………………………………………21
4.2 微結構觀察…………………………………….……21
4.3 摩擦攪拌製程參數的影響
4.3.1 轉速……………………………………………23
4.3.2 走速……………………………………………24
4.3.3 道次……………………………………………25
4.3.4 旋轉工具頭尺寸………………………………25
第五章 討論
5.1 平均晶粒徑大小……………………………………27
5.2 鋁-鎂-氧化鋅混合粉末反應產生氧化鎂的熱力學計算……27
5.3 微結構觀察與成份分析……………………………………29
5.4 X光繞射分析……………………………………………29
5.5 工程應力-應變曲線…………………………………………31
5.6 強化機構……………………………………………………35
5.7 Al-5wt%Mg-10wt%ZnO複合材料與其他成份鋁基複合材料
之機械性質比較…………………………………………37
第六章 結論………………………………………………………40
第七章 參考文獻…………………………………………………41
表……………………………………………………………………46
圖……………………………………………………………………56
參考文獻 References
1. R. S. Mishra, Z. Y. Ma. Friction stir welding and processing. Mater. Sci. Eng. R 50 (2005) 1-78.
2. 宋建德,利用摩擦攪拌鋁和氧化鋅粉末製成奈米氧化鋁之探討,國立中山大學碩士論文 (2007)。
3. W. J. Arbegast. Modeling friction stir joining as a metal working process. Hot Deformation of Aluminum Alloys III. (2003) 313-327.
4. R. S. Mishra. Friction stir process technologies. Adv. Mater. Processes 161 2003 43-46.
5. 陳禹龍,探討摩擦攪拌製程1050鋁合金晶粒的演化行為,國立中山大學碩士論文 (2007)。
6. Z. Y. Ma, R. S. Mishra, M. W. Mahoney. Superplastic deformation behavior of friction stir processed 7075Al alloy. Acta Mater. 50 (2002) 4419-4430.
7. Z. Y. Ma, R. S. Mishra. Cavitation in superplastic 7075Al alloys prepared via friction stir processing. Acta Mater. 51 (2003) 3551-3369.
8. L. B. Johannes, R. S. Mishra. Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum. Mater. Sci. Eng. A 464 (2007) 255-260.
9. 賴志明,摩擦攪拌添加奈米氧化鋁對超細晶鋁合金加工硬化行為的探討,國立中山大學碩士論文 (2009)。
10. 王詠毅,利用摩擦攪拌製程探討添加鎂對超細鋁鎂合金機械性質的綜合影響,國立中山大學碩士論文 (2010)。
11. 李宜珊,利用摩擦攪拌製程及原位反應製備鋁基奈米複合材料,國立中山大學博士論文 (2011)。
12. 鄭又升,探討利用摩擦攪拌製備之奈米氧化鋁/1050鋁合金複材對機械性質影響之研究,國立中山大學碩士論文 (2005)。
13. 郭傳宗,添加微奈米碳化矽鋁基複合材料之機械強度及磨耗抵抗之研究,台灣科技大學機械所碩士論文 (2003)。
14. M.Kok, journal of materials processing technology. Sci. Mater. (2005) 381-387.
15. C. J. Hsu, P. W. Kao, N. J. Ho. Intermetallic-reinforced aluminum matrix composites produced in situ by friction stir processing. Mater. Lett. 61 (2007) 1315-1318.
16. C. J. Hsu, P.W. Kao, N.J. Ho. Ultrafine-grained Al-Al2Cu composite produced in situ by friction stir processing. Sci. Mater. 53 (2005) 341-345.
17. C. J. Hsu, C. Y. Chang, P. W. Kao, N. J. Ho, C. P. Chang. Al-Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater. 54 (2006) 5241-5249.
18. Q. Zhang, B. L. Xiao, P. Xue, Z. Y. Ma. Microstructural evolution and mechanical properties of ultrafine grained Al3Ti/Al-5.5Cu composites produced via hot pressing and subsequent friction stir processing. Mater. Chem. Phys. 134 (2012) 294-301.
19. 李宜珊,Al-10at%Fe 合金經摩擦攪拌製程之微結構與機械性質研究,國立中山大學碩士論文 (2006)。
20. G. Chen, G. Sun. Study on in situ reaction-processed Al–Zn/α-Al2O3(p) composites. Mater. Sci. Eng. A 244(1998) 291–295.
21. T. G. Durai, K. Das, S. Das. Synthesis and characterization of Al matrix composites reinforced by in situ alumina particulates. Mater. Sci. Eng. A445-446 (2007) 100–105.
22. P. Yu, C. J. Deng, N. G. Ma, H.L. Dickon. A new method of producing uniformly distributed alumina particles in Al-based metal matrix composite. Scr. Mater.(2004) 679– 682.
23. C. F. Chen, P. W. Kao, L. W. Chang, N. J. Ho. Effect of processing parameters on microstructure and mechanical properties of an Al-Al11Ce3-Al2O3 in situ composite produced by friction stir processing. Metal. Trans. A 41 (2010) 513-522.
24. C. F. Chen, P. W. Kao, L. W. Chang, N. J. Ho. Mechanical properties of nanometric Al2O3 particulate-reinforced Al-Al11Ce3 composites produced by friction stir processing. Mater. Trans. 51 (2010) 933-938.
25. Q. Zhang, B. L. Xiao, W. G. Wang, Z. Y. Ma. Reactive mechanism and mechanical properties of in situ composites fabricated from an Al–TiO2 system by friction stir processing. Acta Mater. 60 (2012) 7090-7103.
26. Q. Zhang, B. L. Xiao, Q. Z. Wang, Z. Y. Ma. In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al-TiO2 system. Mater. Lett. 65 (2011) 2070-2072.
27. G. L. You, N. J. Ho, P. W. Kao. In-situ formation of Al2O3 nanoparticles during friction stir processing of Al-SiO2 composite, Mater. Characterization 80 (2013) 1-8.
28. G. L. You, N. J. Ho, P. W. Kao. The microstructure and mechanical properties of an Al-CuO in-situ composite produced using friction stir processing. Mater. Lett. 90 (2013) 26-29.
29. 游冠霖,利用摩擦攪拌製程於鋁-氧化矽、鋁-氧化銅及鋁-鎂-氧化銅系統製備奈米顆粒強化鋁基複材,國立中山大學博士論文 (2013)。
30. G. L. You, N. J. Ho, P. W. Kao. Aluminum based in situ nanocomposite produced from Al-Mg-CuO powder mixture by using friction stir processing. Mater. Lett. 100 (2013) 219-222.
31. T. G. Nieh, J. Wadsworth. Hall-Petch relation in nanocrystalline solids. Scr. Mater. 25 (1991) 955-958.
32. J. Chen, L. Lu, K. Lu. Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54 (2006) 1913-1918.
33. A. H. Chokshi, A. Rosen, J. Karch. On the Validity of the Hall-Petch Relationship in Nanocrystalline. Scr. Mater. 23(1989) 1679-1683.
34. A. M. Elsherik, U. Erb, G. Palumbo. Deviations from Hall-Petch Behavior in as-Prepared Nanocrystalline Nickel. Scr. Mater. 27(1992) 1185-1188.
35. A. A. W. Thompson. Yielding in Nickel as a Function of Grain or Cell-Size .Acta Mater. 23(1975) 1337-1342.
36. Y. S. Sato, M. Urata, H. Kokawa, K. Ikeda. Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Acta. Mater. 354 (2003) 298-305.
37. C. Y. Yu, P. W. Kao, C. P. Chang. Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Mater. 53 (2005) 4019-4028.
38. Z. Zhang, D. L. Chen. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 54(2006) 1321-1326.
39. Z. Zhang, D. L. Chen. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Lett. 483-484 (2008) 148-152.
40. D. Yadav, R. Bauri. Nickel particle embedded aluminum matrix composite with high ductility. Mater. Lett. 64(2010) 664-667.
41. J. Qian, J. Li, J. Xiong, F. Zhang, X. Lin. In situ synthesizing Al3Ni for fabrication of intermetallic-reinforced aluminum alloy composites by friction stir processing. Mater. Sci. Eng. A 550 (2012) 279-285.
42. L. Ke, C. Huang, L. Xing, K. Huang. Al-Ni intermetallic composites produced in situ by friction stir processing. J. Alloy Compd. 503(2010) 494-499.
43. P. Liang, T. Tarfa, J.A. Robinson. Experimental investigation and thermodynamic calculation of the Al-Mg-Zn system. A314 (1998) 87-110.
44. 張志溢,摩擦旋轉攪拌製程對AZ31 鎂合金晶粒細化的研究,國立中山大學碩士論文 (2004)。
45. C. N. Cochran, D. L. Belitskus, D. L. Kinosz. Oxidation of aluminum-magnesium melts in air, oxygen, flue gas, and carbon dioxide. Metall. Mater. Trans. B. 8 (1977) 323-332.
46. Z. Zhang, H.W. Zhang. Numerical studies on controlling of process parameters in friction stir welding. J. Mater. Process. Tech. 209(1009) 241-270.
47. M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling, W. H. Bingle. Properties of friction-stir-welded 7075 T651 aluminum. Metall. Mater. Trans. A29(1998) 1955-1964.
48. R. Nandan, T. DebRoy, H. K. D. H. Bhadeshia. Recent advances in friction stir welding process, weldment structure and properties. Prog. Mater. Sci. 53(2008) 980-1023.
49. S. Swaminathan, K. Oh-Ishi, A. P. Zhilyaev, C. B. Fuller, B. London, M. W. Mahoney, T. R. McNelley. Peak stir zone temperatures during friction stir processing. Metall. Mater. Trans. A41(2010) 631-640.
50. J. Qian, J. Li, F. Sun, J. Xiong, F. Zhang, X. Lin. An analytical model to optimize rotation speed and traverse speed of friction stir welding for defect-free joints. Scr. Mater. 68(2013) 175-178.
51. V. Balasubramanian. Relationship between base metal properties and friction stir welding process parameters. Mater. Sci. A480 (2008) 397-403.
52. M. Abbasi, Gharacheh, A. H. Kokabi, G. H. Daneshi, B. Shalchi, R. Sarrafi. The influence of the ratio of rotational speed / traverse speed on mechanical properties of AZ31 friction stir welds. Int. J. Mach. Tools. Manuf. 46(2006) 1983-1987.
53. F. Khodabakhshi, A. Simchi, A.H. Kokabi, M. Nosko, F. Simancik, P. Svec. Microstructure and texture development during friction stir processing of Al-Mg alloy sheets with TiO2 nanoparticles. Mater. Sci. A605(2014) 108-118.
54. K. Sillapasa, S. Surapunt, Y. Miyashita, Y. Mutoh, N. Seo. Tensile and fatigue behavior of SZ, HAZ and BM in friction stir welded joint of rolled 6N01 aluminum alloy plate. Int. J. Fatigue. 63(2014) 162-170.
55. B. F. Schultz, J. B. Ferguson, P.K. Rohatgi. Microstructure and hardness of Al2O3 nanoparticle reinforced Al-Mg composites fabricated by reactive wetting and stir mixing. Mater. Sci. A530(2011) 87-97.
56. 許樹恩、吳泰伯,X 光繞射原理與材料結構分析,中國材料科學學會,材料科學叢書1 (1993)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code