Responsive image
博碩士論文 etd-0728115-141949 詳細資訊
Title page for etd-0728115-141949
論文名稱
Title
合成,鑑定和研究奈米顆粒在生物醫學與環境應用中的作用
Synthesis, characterization and study the role of nano particles in Biomedical & Environmental applications.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
139
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-21
繳交日期
Date of Submission
2015-08-28
關鍵字
Keywords
奈米顆粒、抗菌活性、螢光光譜、MALDI-MS、綠色化學、微萃取、藥物檢測
Fluorescence spectroscopy, Drug detection, Green synthesis, Nano particles, Antibacterial activity, MALDI-MS, Micro-extraction
統計
Statistics
本論文已被瀏覽 5797 次,被下載 39
The thesis/dissertation has been browsed 5797 times, has been downloaded 39 times.
中文摘要
論文的主要興趣包括納米粒子的生物醫藥和環境應用,包括細菌傳感器,存在於生物液體中的治療藥物,和存在於環境樣品中的金屬污染物。本文也主要集中於抗菌納米粒子的製造,如利用廢棄海鮮為前驅, 製造氧化鈣顆粒和碳熒光點。
研究新穎的納米材料如熒光碳點可能的應用,例如在基質輔助雷射脫附游離質譜儀(MALDI MS)的非甾體類消炎藥量化研究的可能基質,和甲芬那酸的血清檢測中的可能基質。我們發現,碳點可以在低分子量化合物的檢測中發揮重要作用。 與常規基質如2,5-二羥基苯甲酸的比較,碳點被認為是一個優秀的基質,以避免背景信號和甲芬那酸的信號的碎片。
此外,開發的方法應用於對於甲芬那酸生物流體(如血清)的檢測。納米顆粒的效率和功能取決於它們的形狀,大小和表面修飾性質。要微調合成的納米粒子,應用各種合成方法如水熱裂解,齊射散熱,包括自上而下和自下而上的方法。一種新的方法已經制定了,為合成氧化鈣納米粒子, 應用海洋餐廚垃圾, 綠色的合成方法。此外,氧化鈣納米顆粒的抗微生物 (對革蘭氏陽性和革蘭氏陰性細菌)效果,也進行了研究。
我們發現,氧化鈣納米顆粒,對革蘭氏陽性和革蘭氏陰性細菌的最小抑制濃度為10微克/毫升,通過光密度,磁盤擴散和MALDI-MS分析。海洋餐廚垃圾/廢物回收&氧化鈣納米粒子的合成過程中的副產物, 高度熒光碳點也被合成。我們進一步探討這些碳點作為熒光探針與檢測Cu2+離子的應用。這個熒光傳感平台表現出優異的選擇性和靈敏度,Cu2 +離子的檢測極限低至5nM。這個檢測平台,對Cu2+離子的海水樣品中測定的實際應用也被成功地證明。這個檢測平台,利用有機和無機廢棄物合成的納米粒子的發展,形成了可持續發展的綠色技術的基本依據。
該方法進行了調整,以提高納米顆粒的產率,以使之成為工業上有效的方法。使用液相微萃取&合成金屬氧化物納米顆粒如氧化鋅為分離水樣的細菌細胞。氧化鋅納米顆粒改性修飾的聚甲基丙烯酸甲酯,使氧化鋅疏水性,以提高納米顆粒吸附在細菌細胞的表面上。 使用MALDI質譜鑑定分離的細菌細胞。結果表明,上述的方法是對致病細菌如金黃色葡萄球菌和綠膿桿菌的分析一種簡單,快速和有效的微萃取技術。該方法是由實際樣品,如自來水和飲用水的分析驗證。
Abstract
The prime interest of the thesis involves biomedical and environmental applications of
nanoparticles including sensors for bacteria and therapeutic agents present in the biological fluid and metal contaminants in environmental samples. This thesis was also focused on fabrication of anti-bacterial nanoparticles (calcium oxide nanoparticles) and fluorescent carbon dots using waste sea food as precursors.
The novel nanomaterials such as fluorescent carbon dots are investigated for their potential
application such as possible matrix in matrix assisted laser/desorption ionization mass
spectrometry (MALDI MS) for quantification of non-steroidal anti-inflammatory drug, and
mefenamic acid in serum. We found that the carbon dots can play an important role in the detection of low molecular weight compounds. In comparison with conventional matrix such as 2,5-dihydroxy benzoic acid, carbon dots were found to be an outstanding matrix to avoid background signals and fragmentation of the mefenamic acid signals. Furthermore, the developed methods were applied for the detection of mefenamic acid biological fluid such as serum.
The efficiency and function of the nanoparticles depend on their shape, size and surface modified
properties. To fine tune the nanoparticles, various synthetic methods were applied such as
hydrothermal pyrolysis, salvo-thermolytic including both top down and bottom up approaches. A novel method had been developed for the synthesis of calcium oxide nanoparticles from marine sea food waste by green synthesis method. Further, the antimicrobial effect of calcium oxide nanoparticles was also studied to against gram positive and gram-negative bacteria. We found that minimum inhibitory concentration of the calcium oxide nanoparticles was 10 μg /mL for micro-organisms by optical density, disk diffusion and MALDI-MS. Highly fluorescent carbon
dots were also synthesized as a byproduct of food waste recycling during the synthesis of calcium oxide nanoparticles.
We further explored these carbon dots as probes for a fluorescent Cu2+ ions sensing application.
This fluroscence sensing platform exhibited excellent selectivity and sensitivity toward Cu2+ ions with detection limit as low as 5 nM. The practical application of this sensing platform for the determination of Cu2+ ions in the seawater samples was also successfully demonstrated. This forms the fundamental basis of development of sustainable green technologies for exploiting organic and inorganic waste for nanoparticles synthesis. The method was tuned to enhance the yield of nanoparticles in order to make it to become the industrially powerful method.
A metal oxide nanoparticle such as zinc oxide was synthesized for separation of bacterial cells
from water samples using liquid phase micro-extraction. Zinc oxide nanoparticles were modified with polymethyl methacrylate to make the surface of zinc oxide completely hydrophobic to
clutch bacterial cells. The separated bacterial cells were identified using MALDI MS. The results
indicated that the above approach is a simple, rapid and efficient micro extraction technique for the analysis of pathogenic bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa.
The method was validated by the analysis of real samples, such as tap and drinking water.
目次 Table of Contents
Acknowledgment ---------------------------------------------------------------------------------- i
Abstract in (Chinese)------------------------------------------------------------------------------iv
Abstract in (English) ----------------------------------------------------------------------------- v
Contents--------------------------------------------------------------------------------------------vii
List of Figures-------------------------------------------------------------------------------------xii
List of Tables-------------------------------------------------------------------------------------xvi
Outline -------------------------------------------------------------------------------------------xvii
Chapter-1
General introduction
1.1.0. Nanotechnology ----------------------------------------------------------------------------1
1.2.0. Nanoparticles -------------------------------------------------------------------------------2
1.3.0. Synthesis methods -------------------------------------------------------------------------3
1.4.0. Characterization techniques ------------------------------------------------------------- 7
1.5.0. Environmental and biomedical and applications ------------------------------------- 7
1.6.0. Analytical techniques used in bio/environmental sample analysis ------------------ 8
1.6.1. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS)---8
1.6.2. Fluorescence spectroscopy ------------------------------------------------------------- 10
1.7.0. Detection and Quantification of drugs in biological fluids using nanoparticles-12
1.7.1. Quantification of Drugs ---------------------------------------------------------------- 12
1.7.2. Nanoparticles based MALDI-MS methods for the analysis of drugs -------------13
1.8.0. Analytical methods for detection and analysis of bacteria -------------------------14
1.8.1. Detection of Bacteria --------------------------------------------------------------------14
1.8.2. Conventional Methods for bacterial identification ----------------------------------15
1.8.3. MALDI-MS methods for bacterial analysis -----------------------------------------15
1.8.4. Nanoparticles assisted liquid phase microextraxtion (NLPME) coupled with
MALDI-MS for bacterial analysis ---------------------------------------------------- 16
1.9.0. Nanoparticles as antimicrobial agents ----------------------------------------------- -17
1.10.0. Analytical methods for detection and quantification of toxic metals -----------18
1.10.1. Detection and quantification of metals ---------------------------------------------18
1.10.2. Nanoparticles assisted fluorescent sensors methods ------------------------------20
1.11.0. References ------------------------------------------------------------------------------22
Chapter-2
Carbon dots as nanoantennas for anti-inflammatory drug analysis
using surface-assisted laser desorption/ionization mass spectrometry in
serum
2.1.0. Introduction ------------------------------------------------------------------------------27
2.2.0. Experimental methods ----------------------------------------------------------------- 29
2.2.1. Material and Methods -------------------------------------------------------------------29
2.2.2. Synthesis of C-dots ----------------------------------------------------------------------30
2.2.3. Instruments -------------------------------------------------------------------------------30
2.2.4. Sample preparation and MALDI-TOF MS analysis --------------------------------31
2.2.5. Quantification of Mefenamic acid in serum by MALDI-TOF-MS ---------------31
2.3.0. Results and Discussion-----------------------------------------------------------------32
2.3.1. Synthesis and Characterization --------------------------------------------------------32
2.3.2. MALDI-MS analysis of Mefenamic acid using C-dots ----------------------------35
2.3.3. Quantitative Determination of MFA in serum ---------------------------------------38
2.4.0. Conclusion--------------------------------------------------------------------------------42
2.5.0. References --------------------------------------------------------------------------------42
Chapter-3
ZnO nanoparticle modified polymethyl methacrylate assisted dispersive liquidliquid
micro extraction coupled MALDI-MS for rapid pathogenic bacteria analysis
3.1.0. Introduction -----------------------------------------------------------------------------46
3.2.0. Experimental -----------------------------------------------------------------------------48
3.2.1. Chemicals and methods ----------------------------------------------------------------48
3.2.2. Instrumentation -------------------------------------------------------------------------48
3.2.3. Synthesis of ZnO@PMMA polymer -------------------------------------------------49
3.2.4. Bacterial cultivation --------------------------------------------------------------------49
3. 2.5. ZnO@PMMA-DLLME extraction and MALDI-MS analysis procedure ------50
3.2.6. Real water sample collection ----------------------------------------------------------52
3.3.0. Results and Discussion -----------------------------------------------------------------52
3.3.1. Synthesis and Characterization of the PMMA polymer grafted ZnO NPs ------52
3.3.2. ZnO@PMMA-DLLME method coupled with MALDI-MS for bacteria
analysis-------------------------------------------------------------------------------------54
3.3.2.1. Selection of suitable extracting solvent --------------------------------------------56
3.3.2.2. Optimization of volume of extracting solvent ------------------------------------ 58
3.3.2.3. Selection of suitable dispersive solvent and volume -----------------------------58
3.3.2.4. The potentiality of ZnO@PMMA in microextraction of bacteria---------------62
3.3.4. Method for reaching lowest detectable concentration of pathogenic bacteria-65
3.3.5. Mechanistic interaction of ZnO@PMMA with bacteria ------------------------65
3.3.6. Real sample analysis --------------------------------------------------------------------68
3.4.0. Conclusion ---------------------------------------------------------------------------------70
3.5.0. References ---------------------------------------------------------------------------------70
Chapter-4 Antibacterial effect of calcium oxide nano-plates fabricated from sea
food waste
4.1.0. Introduction --------------------------------------------------------------------------------74
4.2.0. Materials and methods -------------------------------------------------------------------75
4.2.1. Chemicals ----------------------------------------------------------------------------------75
4.2.2. Chemical Processing of the Shrimp shells ---------------------------------------------75
4.2.3. Instrumentation ----------------------------------------------------------------------------75
4.2.4. Synthesis of calcium oxide nano-plates ------------------------------------------------76
4.2.5. Optical density (OD600) measurements -----------------------------------------------76
4.2.6. Disk diffusion method --------------------------------------------------------------------76
4.2.7. MALDI-MS Analysis --------------------------------------------------------------------77
4.3.0. Results and discussion -------------------------------------------------------------------77
4.3.1. Synthesis of CaO NPs --------------------------------------------------------------------77
4.3.2. Characterization of CaCO3 --------------------------------------------------------------78
4.3.3. Characterization of CaO NPs ------------------------------------------------------------80
4.3.4. Antibacterial activity of CaO NPs ------------------------------------------------------83
4.3.5. The possible interaction mechanism ---------------------------------------------------87
4.3.6. Conclusion ---------------------------------------------------------------------------------89
4.3.7. References ---------------------------------------------------------------------------------89
Chapter- 5 Fabrication of Carbon dots from sea food waste for highly selective and
sensitive detection of copper ions
5.1.0. Introduction --------------------------------------------------------------------------------92
5.2.0. Materials and methods -------------------------------------------------------------------94
5.2.1. Chemicals ----------------------------------------------------------------------------------94
5.2.2. Instrumentation ----------------------------------------------------------------------------95
5.2.3. Sample collection and pretreatment ----------------------------------------------------95
5.2.4. Synthesis of C-dots -----------------------------------------------------------------------95
5.2.5. Quantum yield measurement ------------------------------------------------------------96
5.2.6. Fluorescence Assay of Cu2+ -------------------------------------------------------------96
5.2.7. Analysis of a Real Sample ---------------------------------------------------------------97
5.3.0. Results and discussion -------------------------------------------------------------------97
5.3.1. Synthesis and mechanism of formation of C-dots from prawn shells -------------97
5.3.2. Characterization of C-dots ---------------------------------------------------------------99
5.3.3. Stability of C-dot ------------------------------------------------------------------------102
5.3.4. pH effect on fluorescence sensing system -------------------------------------------103
5.3.5. Reaction Time: ---------------------------------------------------------------------------104
5.3.6. Sensitivity --------------------------------------------------------------------------------104
5.3.7. Selectivity --------------------------------------------------------------------------------106
5.3.8. Possible fluorescence emission quenching mechanism. ---------------------------107
5.3.9. Real Sample analysis -------------------------------------------------------------------111
5.4.0. Conclusion -------------------------------------------------------------------------------112
6.0.0. Conclusion of Thesis-------------------------------------------------------------------116
7.0.0. Appendix---------------------------------------------------------------------------------118
參考文獻 References
References
(1) Mnerie, D.; Mnerie, G. V. Revista de Tehnologii neconvenţionale, Editura Politehnica 2009.
(2) Bhagat, Y.; Gangadhara, K.; Rabinal, C.; Chaudhari, G.; Ugale, P.
(3) Porter, A. L.; Youtie, J. Journal of nanoparticle research 2009, 11, 1023-1041.
(4) Adams, F. C.; Barbante, C. Spectrochimica Acta Part B: Atomic Spectroscopy 2013, 86, 3-13.
(5) Tarafdar, J.; Sharma, S.; Raliya, R. Afr. J. Biotechnol 2013, 12, 219-226.
(6) Toumey, C. Nature nanotechnology 2009, 4, 783-784.
(7) Melnik, A.; Shagalina, O. Siberian Federal University 2011.
(8) Somorjai, G. Pure and Applied Chemistry 1978, 50, 963-969.
(9) Pal, S. L.; Jana, U.; Manna, P.; Mohanta, G.; Manavalan, R. 2011.
(10) Gleiter, H. Acta materialia 2000, 48, 1-29.
(11) Gleiter, H. In Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine
Microstructures; Springer, 1993, pp 3-35.
(12) Gleiter, H. Nanostructured Materials 1995, 6, 3-14.
(13) Roduner, E. Chemical Society Reviews 2006, 35, 583-592.
(14) Buzea, C.; Pacheco, I. I.; Robbie, K. Biointerphases 2007, 2, MR17-MR71.
(15) Sharma, A. K.; Jha, R.; Gupta, B. Sensors Journal, IEEE 2007, 7, 1118-1129.
(16) Lue, J.-T. Journal of physics and chemistry of solids 2001, 62, 1599-1612.
(17) Gao, J.; Gu, H.; Xu, B. Accounts of chemical research 2009, 42, 1097-1107.
(18) Wyndham, K. D.; Lawrence, N. L.; Google Patents, 2009.
(19) Nalwa, H. S. Handbook of Nanostructured Materials and Nanotechnology, Five-Volume Set;
Academic Press, 1999; Vol. 3.
(20) Mijatovic, D.; Eijkel, J.; Van Den Berg, A. Lab on a Chip 2005, 5, 492-500.
(21) Verma, S.; Gokhale, R.; Burgess, D. J. International journal of pharmaceutics 2009, 380, 216-222.
(22) Choi, W. K.; Liew, T. H.; Chew, H. G.; Zheng, F.; Thompson, C. V.; Wang, Y.; Hong, M. H.; Wang, X. D.;
Li, L.; Yun, J. Small 2008, 4, 330-333.
(23) Chung, S. W.; Ginger, D. S.; Morales, M. W.; Zhang, Z.; Chandrasekhar, V.; Ratner, M. A.; Mirkin, C.
A. small 2005, 1, 64-69.
(24) Biswas, A.; Bayer, I. S.; Biris, A. S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in Colloid and Interface
Science 2012, 170, 2-27.
(25) Gupta, A. R.; Kant, V. Science International 2013, 1.
(26) Guzmán, M. G.; Dille, J.; Godet, S. Int J Chem Biomol Eng 2009, 2, 104-111.
(27) Rajamathi, M.; Seshadri, R. Current Opinion in Solid State and Materials Science 2002, 6, 337-345.
(28) Namboodiri, V. V.; Varma, R. S. Green Chem. 2001, 3, 146-148.
(29) Makarov, V.; Love, A.; Sinitsyna, O.; Makarova, S.; Yaminsky, I.; Taliansky, M.; Kalinina, N. Acta (31) Ngomsik, A.-F.; Bee, A.; Draye, M.; Cote, G.; Cabuil, V. Comptes Rendus Chimie 2005, 8, 963-970.
(32) Kailasa, S. K.; Cheng, K.-H.; Wu, H.-F. Materials 2013, 6, 5763-5795.
(33) Kailasa, S. K.; Mehta, V. N.; Wu, H.-F. RSC Advances 2014, 4, 16188-16205.
(34) Karas, M.; Bachmann, D.; Hillenkamp, F. Analytical Chemistry 1985, 57, 2935-2939.
(35) Karas, M.; Bachmann, D.; Bahr, U. e.; Hillenkamp, F. International journal of mass spectrometry and
ion processes 1987, 78, 53-68.
(36) Karas, M.; Hillenkamp, F. Analytical chemistry 1988, 60, 2299-2301.
(37) Lay, J. O. Mass Spectrometry Reviews 2001, 20, 172-194.
(38) Gross, J.; Strupat, K. TrAC Trends in Analytical Chemistry 1998, 17, 470-484.
(39) Peterson, D. S. Mass spectrometry reviews 2007, 26, 19-34.
(40) Fuchs, B.; Schiller, J. Current Organic Chemistry 2009, 13, 1664-1681.
(41) Fuchs, B.; Arnold, K.; Schiller, J. Encyclopedia of Analytical Chemistry 2008.
(42) Dreisewerd, K. Chemical reviews 2003, 103, 395-426.
(43) Kussmann, M.; Nordhoff, E.; Rahbek-Nielsen, H.; Haebel, S.; Rossel-Larsen, M.; Jakobsen, L.;
Gobom, J.; Mirgorodskaya, E.; Kroll-Kristensen, A.; Palm, L. Journal of Mass Spectrometry 1997, 32,
593-601.
(44) Zenobi, R.; Knochenmuss, R. Mass Spectrometry Reviews 1998, 17, 337-366.
(45) van Hove, E. R. A.; Smith, D. F.; Heeren, R. M. Journal of chromatography A 2010, 1217, 3946-3954.
(46) Puolitaival, S. M.; Burnum, K. E.; Cornett, D. S.; Caprioli, R. M. Journal of the American Society for
Mass Spectrometry 2008, 19, 882-886.
(47) Aebersold, R.; Mann, M. Nature 2003, 422, 198-207.
(48) Altelaar, A. M.; Klinkert, I.; Jalink, K.; de Lange, R. P.; Adan, R. A.; Heeren, R. M.; Piersma, S. R.
Analytical chemistry 2006, 78, 734-742.
(49) Sauer, S.; Kliem, M. Nature Reviews Microbiology 2010, 8, 74-82.
(50) Hopfgartner, G.; Bourgogne, E. Mass spectrometry reviews 2003, 22, 195-214.
(51) Lakowicz, J. R. Principles of fluorescence spectroscopy; Springer Science & Business Media, 2013.
(52) Lakowicz, J. R. In Principles of fluorescence spectroscopy; Springer, 1999, pp 1-23.
(53) Demchenko, A. P. Introduction to fluorescence sensing; Springer Science & Business Media, 2008.
(54) Mullett, W. M. Journal of biochemical and biophysical methods 2007, 70, 263-273.
(55) Kataoka, H. TrAC Trends in Analytical Chemistry 2003, 22, 232-244.
(56) Matuszewski, B.; Constanzer, M.; Chavez-Eng, C. Analytical Chemistry 1998, 70, 882-889.
(57) Arakawa, R.; Kawasaki, H. Analytical Sciences 2010, 26, 1229-1240.
(58) Chiang, C.-K.; Chen, W.-T.; Chang, H.-T. Chemical Society Reviews 2011, 40, 1269-1281.
(59) Lundberg, J. O.; Weitzberg, E.; Cole, J. A.; Benjamin, N. Nature Reviews Microbiology 2004, 2, 593-
602.
(60) Todar, K. Todar's online textbook of bacteriology; University of Wisconsin-Madison Department of
Bacteriology, 2006.
(61) Cherkaoui, A.; Hibbs, J.; Emonet, S.; Tangomo, M.; Girard, M.; Francois, P.; Schrenzel, J. Journal of
clinical microbiology 2010, 48, 1169-1175.
(62) Mandal, P.; Biswas, A.; Choi, K.; Pal, U. American Journal Of Food Technology 2011, 6, 87-102.
(63) Tang, Y.-W.; Ellis, N. M.; Hopkins, M. K.; Smith, D. H.; Dodge, D. E.; Persing, D. H. Journal of clinical
microbiology 1998, 36, 3674-3679.
(64) Sauer, S.; Freiwald, A.; Maier, T.; Kube, M.; Reinhardt, R.; Kostrzewa, M.; Geider, K. PloS one 2008,
3, e2843.
(65) Kailasa, S. K.; Wu, H.-F. TrAC Trends in Analytical Chemistry 2015, 65, 54-72.
(66) Kailasa, S. K.; Wu, H.-F. Microchimica Acta 2014, 181, 853-864.
(67) Stübiger, G.; Wuczkowski, M.; Bicker, W.; Belgacem, O. Analytical chemistry 2014, 86, 6401-6409.
(68) Nederberg, F.; Zhang, Y.; Tan, J. P.; Xu, K.; Wang, H.; Yang, C.; Gao, S.; Guo, X. D.; Fukushima, K.; Li,
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code