Responsive image
博碩士論文 etd-0728115-160306 詳細資訊
Title page for etd-0728115-160306
論文名稱
Title
中錳鋼變形早期變形誘發麻田散鐵之組織研究
Early stage microstructure of deformation-induced martensite in a medium Mn steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-25
繳交日期
Date of Submission
2015-08-28
關鍵字
Keywords
TRIP鋼、極細晶錳鋼、應變誘發麻田散鐵、晶向關係、麻田散鐵成核
TRIP steel, Submicro-grained, Strain-induced martensite, Orientation relationship, Martensite nucleation
統計
Statistics
本論文已被瀏覽 5696 次,被下載 421
The thesis/dissertation has been browsed 5696 times, has been downloaded 421 times.
中文摘要
本論文研究鐵錳合金鋼中次微米沃斯田鐵晶粒經應變後產生的應變誘發麻田散鐵之成核組織。本論文利用SEM及EBSD研究麻田散鐵之成核位置及其與母相沃斯田鐵的結晶方位關係並研究成核所在之沃斯田鐵晶粒及鄰近肥粒鐵晶粒的晶粒大小、晶粒形狀、Schmid factor之大小以了解成核所需之條件。實驗結果發現單一麻田散鐵晶粒與母相沃斯田鐵晶粒間在不同界面位置可以有K-S、G-T及N-W OR三種晶向關係。在次微米沃斯田鐵晶粒中應變誘發麻田散鐵是在沃斯田鐵與肥粒鐵的兩相界面處成核,與大晶粒在晶粒內成核位置不同。麻田散鐵成核之所在位置之沃斯田鐵其Schmid factor較其他沃斯田鐵晶粒大,且其尺寸也較大。沃斯田鐵晶粒之形狀則對成核無明顯的影響。
Abstract
This research investigated the nucleation of strain-induced martensite from submicron-grained austenite of a medium manganese steel. Scanning electron microscopy and electron backscattered diffraction were used to study the nucleation site of martensite, and the orientation relationship between martensite and austenite. Grain size, shape, and Schmid factor of austenite grains where martensite nucleated, and ferrite grains which close to the nucleated martensite were measured. It was found that in submicron-grained austenite, martensite is nucleated at the interphase boundary of austenite and ferrite, which is different from austenite having ordinary grain size, in which martensite is nucleated from grain interiors. The orientation relationship between martensite and austenite was found varied in locations, K-S, G-T and N-W orientation relationships were found. Large Schmid factor and grain size are the favor factors for the nucleation martensite.
目次 Table of Contents
目錄
一、 前言 1
二、文獻回顧 2
2-1 塑性變形誘發麻田散鐵相變化(Transformation Induced plasticity ,TRIP)鋼 2
2-2 麻田散鐵及其特徵 2
2-3 bcc結構與fcc結構之間的結晶方向關係 6
2-4 麻田散鐵成核位置之觀察 13
2-5 沃斯田鐵晶粒尺寸效應 16
三、研究目的 20
四、實驗方法 21
4-1 實驗材料 21
4-2 拉伸實驗 21
4-3 顯微組織觀察 21
4-4 背向散射電子繞射分析 22
五、實驗結果 23
5-1 拉伸後的顯微組織 23
5-2 麻田散鐵成長初期與母相沃斯田鐵間的結晶方位關係 24
5-3 母相沃斯田鐵晶粒的Schmids factor分佈 25
5-4 與α’麻田散鐵相鄰之bcc肥粒鐵的Schmids factor 27
5-5 沃斯田鐵與α’麻田散鐵晶粒內的晶向gradient 28
5-6 鄰近肥粒鐵與α’麻田散鐵之間的misorientation 28
5-7 母相沃斯田鐵與相鄰肥粒鐵之間的misorientation 29
5-8 麻田散鐵鄰近肥粒鐵的晶粒尺寸和形狀分析 29
5-9 母相沃斯田鐵的晶粒尺寸和形狀與α’麻田散鐵成長之間的關係 30
六、討論 32
6-1 α’麻田散鐵與母相沃斯田鐵的結晶方位關係 32
6-2 α’麻田散鐵的成核位置 35
6-2-1晶粒之間的Misorientation對α’麻田散鐵成核位置影響 36
6-2-2晶粒尺寸與形狀對α’麻田散鐵成核位置的影響 37
6-2-3 Schmid factor與α’麻田散鐵的成核位置的關係 38
七、結論 40
八、參考文獻 41
參考文獻 References
1. De Cooman, B.C., Structure–properties relationship in TRIP steels containing carbide-free bainite. Current Opinion in Solid State and Materials Science, 2004. 8: p. 285-303.
2. Pisarik, S.T., Van Aken, D. C., Crystallographic Orientation of the ε → α′ Martensitic (Athermal) Transformation in a FeMnAlSi Steel. Metallurgical and Materials Transactions A, 2014. 45: p. 3173-3178.
3. Sato, H., Zaefferer, S, A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy. Acta Materialia, 2009. 57: p. 1931-1937.
4. Krauss, G., Martensite in steel: strength and structure. Materials Science and Engineering, 1999. A273–275: p. 40-57.
5. Krauss, G., Marder,A.R., The Morphology of Martensite in Iron Alloys. Metallurgical Transactions, 1971. 2: p. 2343-2357.
6. Shibata, A., Morito, S.,Furuhara, T.,Maki, T., Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys. Acta Materialia, 2009. 57: p. 483-492.
7. Kitahara, H., Ueji, Rintaro,Tsuji, Nobuhiro,Minamino, Yoritoshi, Crystallographic features of lath martensite in low-carbon steel. Acta Materialia, 2006. 54: p. 1279-1288.
8. Morito, S., Tanaka, H.,Konishi, R.,Furuhara, T.,Maki, T., The morphology and crystallography of lath martensite in Fe-C alloys. Acta Materialia, 2003. 51: p. 1789-1799.
9. He, Y., Godet, S, J, John J., Observations of the Gibeon meteorite and the inverse Greninger–Troiano orientation relationship. Journal of Applied Crystallography, 2006. 39: p. 72-81.
10. Sandvik, B. P. J. , Wayman, C.M., Characteristics of Lath Martensite:Part I. Crystallographic and Substructural Features. Materials Transactions, 1983. 14A: p. 809-822.
11. Kelly.P. M., Blake.R. G. , The orientation relationship between lath martensite and austenite in low carbon,low steels. Acta Metallurgical, 1990. 38: p. 1075-1081.
12. Shibata, A.J., Hamidreza T, N, Microstructure and Crystallographic Features of Martensite Transformed from Ultrafine-Grained Austenite in Fe–24Ni–0.3C Alloy. Materials Transactions, 2012. 53: p. 81-86.
13. Morito, S., Huang, X.,Furuhara, T.,Maki, T.,Hansen, N., The morphology and crystallography of lath martensite in alloy steels. Acta Materialia, 2006. 54: p. 5323-5331.
14. Brooks, J.W., Loretto,M. H. , Smallman,R. E., In situ observations of the formation of martensite in stainless steel. Acta Metallurgical, 1979. 27: p. 1829-1838.
15. Suzuki, T., Kojima,H. ,Suzuki,K. ,Hashimoto ,T. ,Michihara., An experimental study of the martensite nucleation and growth in 18 8 stainless steel. Acta Metallurgical, 1977. 25: p. 1151-1162.
16. Rao, B.V.N., On the Orientation Relationships Between Retained Austenite and "Lath" Martensite. Metallurgical Transactions, 1979. 10A: p. 645-648.
17. Zaefferer, S.O., J. Bleck , W., A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Materialia, 2004. 52: p. 2765-2778.
18. Headley .T.J., Brooks.J.A., A New Bcc-Fcc Orientation Relationship Observed between Ferrite and Austenite in Solidification Structures of Steels. Metallurgical and Materials Transactions A, 2002. 5: p. 5-15.
19. Murr, L.E., Staudhammer,K.P, Hecker , S. S. , Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part II. Microstructural Study. Metallurgical Transactions, 1982. 13A: p. 627-635.
20. Misra, R.D.K., Kumar, B. Ravi,Somani, M.,Karjalainen, P., Deformation processes during tensile straining of ultrafine/nanograined structures formed by reversion in metastable austenitic steels. Scripta Materialia, 2008. 59: p. 79-82.
21. Staudhammer, K.P., Murr, L. E., Hecker,S. S. , Nucleation and evolution of strain induced martensitic (bcc) embryos and substructure in stainless steel A transmission electron microscope study. Acta Metallurgical, 1983. 31: p. 267-274.
22. Blondé, R.J.-M., E. Zhao, L. Wright, J. P. Brück, E. van der Zwaag, S. van Dijk, N. H., High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels. Acta Materialia, 2012. 60: p. 565-577.
23. Yoo, C.-S., Park, Yong-Min,Jung, Yeon-Seung,Lee, Young-Kook, Effect of grain size on transformation-induced plasticity in an ultrafine-grained metastable austenitic steel. Scripta Materialia, 2008. 59: p. 71-74.
24. Kisko, A., Misra, R. D. K.,Talonen, J.,Karjalainen, L. P., The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel. Materials Science and Engineering: A, 2013. 578: p. 408-416.
25. Maréchal, L.D., thesis between mechanical properties and phase transformations in a 301LN austenitic stainless steel,. Ph.D.thesis, The University of British Columbia, 2011.
26. Challa, V.S.A., Wan, X. L.,Somani, M. C.,Karjalainen, L. P.,Misra, R. D. K., Strain hardening behavior of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel and relationship with grain size and deformation mechanism. Materials Science and Engineering: A, 2014. 613: p. 60-70.
27. Yang, X.-S.S., Sheng Zhang, Tong-Yi, The mechanism of bcc α′ nucleation in single hcp ε laths in the fcc γ→hcp ε→bcc α′ martensitic phase transformation. Acta Materialia, 2015. 95: p. 264-273.
28. Bogers.A.J , Burgers.W.G., Partial dislocations on the {110} planes in the B.C.C. lattice and the transition of the F.C.C. into the B.C.C. lattice. Acta Materialia, 1964. 12: p. 255-261.
29. Morrison, K.R., Cherukara, Mathew J. Kim, Hojin , Strachan, Alejandro, Role of grain size on the martensitic transformation and ultra-fast superelasticity in shape memory alloys. Acta Materialia, 2015. 95: p. 37-43.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code