Responsive image
博碩士論文 etd-0728117-115910 詳細資訊
Title page for etd-0728117-115910
論文名稱
Title
應用乳化糖蜜緩衝基質加強三氯乙烯污染地下水之生物復育成效
Application of emulsified molasses buffered substrate to enhance the bioremediation efficiency of TCE-contaminated groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-20
繳交日期
Date of Submission
2017-08-28
關鍵字
Keywords
三氯乙烯、生物復育、乳化糖蜜基質、分子生物技術、緩衝溶液
Bioremediation, Trichloroethylene, Emulsified Molasses substrate, Buffer solution, Molecular biological techniques
統計
Statistics
本論文已被瀏覽 5679 次,被下載 0
The thesis/dissertation has been browsed 5679 times, has been downloaded 0 times.
中文摘要
含氯有機溶劑污染場址之調查與整治有較高之難度,而污染源亦不易界定,而三氯乙烯(Trichloroethylene, TCE)由於工業上普遍被使用,具有脂溶性、高滲透及高揮發性等特性,一旦洩漏至地下水後則會造成大範圍的環境污染,且可能會透過飲用水等多種管道,將對人民的身體健康造成危害。近年來生物復育整治技術(biodegradation technology)被視為是一種較具發展性之現地整治技術,其原理為利用微生物分解土壤或地下水中之污染物,對於場址破壞性較小,是一種自然對環境無害的綠色整治技術。若只仰賴現地土壤地下水之原生微生物進行自然降解,其整治成本較不符合經濟效益,因此研究常會使用添加基質來增加其碳源濃度,透過提高碳源刺激微生物菌群生長進而加強生物復育整治成效。在添加基質過後,經過長時間發酵等作用,可能會導致水質酸化而降低污染整治成效,反而增加整治操作成本。因此,本研究選擇以溶解性較高之糖蜜搭配乳化植物油,製作乳化糖蜜基質(Emulsified Molasses substrate, EMS),並且搭配碳酸鈉(Na2CO3)及碳酸氫鈉(NaHCO3)做為pH緩衝溶液,發展一種具有pH緩衝能力之基質,改善其水質易酸化之問題,進而提高整體生物復育整治成效。本研究先針對EMS進行基本特性分析,接著與市售乳化型基質(Emulsified Oil substrate, EOS®)搭配緩衝溶液進行前導實驗,觀察其pH緩衝能力與總有機碳(Total organic carbon, TOC)之消耗情形,並以不同稀釋濃度之緩衝溶液進行實驗,評估其緩衝能力。研究接續進行厭氧微生物批次實驗評估其降解污染物之能力,再以管柱流通性實驗模擬藥劑在土壤含水層中之傳輸情形,並模擬現地地下水水流之上中下游持續傳輸流動後的各項水質參數及污染物降解情形,最後批次及管柱實驗結果皆以分子生物技術分析菌相豐富程度,尋找對污染降解具有貢獻之菌種,以利後續現地實場應用。本研究之EMS經48小時穩定性實驗測試安定性皆為良好,且利用動態光散射儀(Dynamic Light Scattering, DLS)觀察油滴粒徑平均粒徑為0.427 μm。由基質及緩衝溶液前導實驗結果得知EMS之TOC消耗率約為70%,且搭配100 mM緩衝溶液最能有效控制水質酸化情形。由批次實驗結果得知EMS之TCE降解效率較佳,在90天實驗監測結果,TCE去除率可達98%,且副產物順-1,2-二氯乙烯[cis-1,2-Dichloroethene, cis-1,2-DCE(<0.7 mg/L)]及1,1-二氯乙烯[1,1- Dichloroethene, 1,1-DCE(<0.07 mg/L)]皆降解至低於第二類地下水污染管制標準,pH值亦控制在7-8之間,可有效控制水質酸化。變性梯度膠體電泳(Denaturing Gradient Gel Electrophoresis, DGGE)結果得知EMS組別之菌相豐富程度較佳。即時定量分析realtime-PCR(q-PCR)定量分析結果,第0天之Dehalococcoides spp.(DHC)菌數約為2.33E+02 gene copies/g,第90天DHC菌數約為1.78E+04 gene copies/g,其結果顯示添加本研究之EMS並搭配緩衝溶液可使環境維持中性且DHC菌量大幅生長。管柱實驗結果得知其管柱2生物反應區之TCE污染濃度降至降解至0.01 mg/L且監測到乙烯(ethane)生成,其濃度約為0.012-0.059 mg/L,而基質流至管柱3亦能持續利用進行生物復育,使目標污染物TCE及其副產物濃度皆能降解至低於第二類地下水污染管制標準。菌相分析結果得知基質流經管柱2及管柱3在實驗中後期菌相趨勢相較於自然降解組別皆呈現菌相增加之趨勢。綜合上述結果可知,本研究研發之EMS搭配緩衝溶液,能夠有效控制pH值且穩定持續提供碳源供微生物利用,且糖蜜所具有高溶解性佳及易於發酵之特性,亦能提升發酵產氫效率並增加其還原脫氯之整治效率。
Abstract
Soil and groundwater at many existing and former industrial areas and disposal sites are contaminated by halogenated organic compounds that were released into the environment. When they are released into the subsurface, they tend to adsorb onto the soils and cause the appearance of DNAPL (dense-non-aqueous phase liquid) pool. In this study, TCE will be used as the target compound for the feasibility and pilot-scale studies. The cost-effective approach for the remediation of the TCE-contaminated aquifers is the application anaerobic reductive dechlorination for TCE biodegradation. Enhanced in situ bioremediation requires the injection of primary substrates. In this study, the emulsified molasses substrate (EMS) containing pH buffering chemicals (Na2CO3 and NaHCO3) was prepared as the substrate with the capability of pH control. Batch experiments were conducted to evaluate the effectiveness of total organic carbon (TOC) release and pH control for EMS and Emulsified Oil substrate (EOS®). Anaerobic microcosm study was performed to evaluate the feasibility of using EMS as the primary substrate for the enhancement of TCE dechlorination. A column experiment was performed following the microcosm study to assess the transport and distribution phenomena of EMS in aquifers. The variations in microbial diversity and dominant bacteria during the biodegradation process were conducted using a series of molecular biology techniques including DNA extraction, polymerase chain reaction (PCR) amplification, denaturing gradient gel electrophoresis (DGGE), and quantitative PCR (qPCR or real-time PCR) analyses. The globule diameter of the EMS was around 0.427 μm analyzed by the Dynamic light scattering (DLS) method. Results show that EMS with 100 mM of buffering solution could effective control pH and maintain a neutral condition with a TOC consumption of 70%. Results from the microcosm study show that up to 98% of TCE could be removed during the 90-day operational period. The concentrations of TCE dechlorination byproducts [e.g., cis-1,2-dichloroethene (cis-1,2-DCE), 1,1-dichloroethene (1,1-DCE)] were also dropped to below the groundwater standard (<0.7 mg/L). The pH value was maintained in the range from 7 to 8 during the microcosm experiment. Results from the DGGE results show that the microcosms with EMS had a higher microbial diversity. The population of Dehalococcoides spp. (DHC) increased from 2.33E+02 gene copies/g on day 0 to 1.78E+04 gene copies/g on day 90. This indicates that the EMS addition resulted in the increase in DHC population probably due to the optimal pH condition for the growth of DHC. Results from the column study show that the TCE concentrations dropped to below 0.01 mg/L in the column effluents with the ethene concentrations of 0.012 to 0.059 mg/L. Moreover, the DGGE results also show that an increased microbial diversity was observed in soils collected from the third column (the last column of the three-column system). Results from this study indicate that EMS is a substrate with a buffering capability that can be applied to enhance TCE removal through the anaerobic dechlorination mechanism. The enhanced in situ anaerobic bioremediation is a promising technology to remediate TCE-contaminated groundwater.
目次 Table of Contents
摘要 i
目錄 vi
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1含氯脂肪族碳氫化合物 3
2.1.1含氯脂肪族碳氫化合物污染概況 3
2.2三氯乙烯之特性 4
2.2.1三氯乙烯之物理化學特性及毒性危害 4
2.2.2三氯乙烯之傳輸路徑 5
2.3地下水污染整治技術 10
2.3.1物理及化學整治技術 10
2.3.2生物復育整治技術 11
2.4三氯乙烯之生物降解 12
2.4.1三氯乙烯之好氧生物降解 12
2.4.2三氯乙烯之厭氧生物降解 13
2.5基質與緩衝溶液之特性介紹 15
2.5.1糖蜜之基本特性 15
2.5.2厭氧微生物暗發酵產氫代謝途徑 17
2.5.3油品介紹與特性 18
2.5.4緩衝溶液特性介紹 21
2.6 氫氣濃度效應 23
2.7分子生物技術之應用 24
2.7.1 16SrDNA之獨特性及應用 24
2.7.2降解含氯脂肪族之菌種與基因 25
2.7.3聚合酶鏈鎖反應(Polymerase Chain Reaction, PCR) 26
2.7.4瓊酯膠體電泳(Agarose Gel Electrophoresis) 27
2.7.5變性梯度膠體電泳(Denaturing gradient gel electrophoresis, DGGE) 28
第三章 實驗設備與方法 29
3.1研究流程 29
3.2實驗材料與設備 32
3.2.1實驗材料 32
3.2.2實驗儀器與設備 32
3.3實驗設計 33
3.3.1 基質前導實驗 33
3.3.2不同緩衝溶液緩衝能力實驗 33
3.3.3厭氧微生物批次降解實驗 37
3.3.4管柱流通性實驗 37
3.3.5管柱實驗 38
3.4實驗分析方法 39
3.5分子生物分析 39
3.5.1土壤微生物DNA萃取 39
3.5.2聚合酶鏈鎖反應(Polymerase Chain Reaction, PCR) 40
3.5.3變性梯度膠體電泳(Denaturing Gradient Gel Electrophoresis,DGGE) 41
3.5.4 Mixed DNA cloning及定序 42
3.5.5即時定量PCR(realtime-PCR) 42
3.6成分分析 45
3.6.1界達電位分析 45
3.6.2動態光散射儀分析 45
3.7水質分析 45
第四章 結果與討論 46
4.1EMS配製及特性分析 46
4.1.1添加植物油對於糖蜜乳化之影響 47
4.1.2EMS之最佳合成實驗 48
4.1.3EMS基本性質 50
4.1.4 EMS安定性實驗 51
4.2 EMS之生物可利用性評估 52
4.2.1 EMS與緩衝溶液之前導實驗 52
4.2.2不同緩衝溶液濃度之緩衝能力試驗 55
4.3厭氧微生物批次實驗 57
4.3.1控制滅菌組(KC) 57
4.3.2自然降解組(LC) 60
4.3.3乳化型糖蜜基質組(EMS) 63
4.3.4市售乳化型基質組(EOS®) 68
4.4氫氣濃度批次實驗 71
4.5厭氧微生物批次實驗菌相分析 73
4.5.1 DGGE菌相分析 73
4.5.2即時定量分析 realtime-PCR (q-PCR) 75
4.6厭氧微生物管柱實驗 78
4.6.1 管柱流通性實驗 79
4.6.2管柱水質及總有機碳 82
4.6.3管柱總鐵、亞鐵、硫酸鹽、硫化物 86
4.6.4管柱污染物與甲烷變化趨勢 90
4.7管柱實驗菌相分析 94
4.7.1 DGGE菌相分析 94
第五章 結論與建議 96
5.1結論 96
5.2建議 97
參考文獻 98
參考文獻 References
Alfán-Guzmán, Ricardo, Lee, Matthew, Manefield, Michael. (2017). Anaerobic bioreactors for the Treatment of Chlorinated hydrocarbons. Industrial Biotechnology: Sustainable Production and Bioresource Utilization. 421.
Atashgahi, S., Lu, Y., Smidt, H. (2016). Overview of known organohalide-respiring bacteria—phylogenetic diversity and environmental distribution. In Organohalide-Respiring Bacteria. Springer Berlin Heidelberg, 63-105.
Bakhtiyari, M., Moosavi-Nasab, M., Askari, H. (2015). Optimization of succinoglycan hydrocolloid production by Agrobacterium radiobacter grown in sugar beet molasses and investigation of its physicochemical characteristics. Food Hydrocolloids, 45, 18-29.
Borden, Robert, C., Lieberman, M. T. (2009). Passive bioremediation of perchlorate using emulsified edible oils. In In Situ Bioremediation of Perchlorate in Groundwater. Springer New York, 155-175.
Cabirol, N., Jacob, F., Perrier, J., Fouillet, B., Chambon, P. (1998). Complete degradation of high concentrations of tetrachloroethylene by a methanogenic consortium in a fixed-bed reactor. Journal of biotechnology, 62(2), 133-141.
Cabrol, L., Marone, A., Tapia-Venegas, E., Steyer, J. P., Ruiz-Filippi, G., Trably, E. (2017). Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. Fems microbiology reviews, 41(2), 158-181.
Čanković, M., Petrić, I., Marguš, M., Ciglenečki, I. (2017). Spatio-temporal dynamics of sulfate-reducing bacteria in extreme environment of Rogoznica Lake revealed by 16S rRNA analysis. Journal of Marine Systems, 172, 14-23.
Chang C. H., Yang H. Y., Hung J. M., Lu C. J., Liu M. H. (2017). Simulation of combined anaerobic/aerobic bioremediation of tetrachloroethylene in groundwater by a column system. International Biodeterioration & Biodegradation, 117, 150-157.
Chatterjee, N., Sanphui, P., Kemeny, S., Greene, L. A., Biswas, S. C. (2016). Role and regulation of Cdc25A phosphatase in neuron death induced by NGF deprivation or β-amyloid. Cell Death Discovery, 2, 16083.
Chen, X., Liu, Y., Peng, L., Ni, B. J. (2017). Perchlorate, nitrate, and sulfate reduction in hydrogen-based membrane biofilm reactor: Model-based evaluation. Chemical Engineering Journal, 316, 82-90.
Chen, Y., Cheng, J. J., Creamer, K. S. (2008). Inhibition ofanaerobic digestion process: a review. BioresourceTechnology, 99, 4044 – 4064.
Cheng, M., Zeng, G., Huang, D., Yang, C., Lai, C., Zhang, C., Liu, Y. (2017). Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds. Critical Reviews in Biotechnology, 1-14.
Cisneros-Pérez, C., Etchebehere, C., Celis, L. B., Carrillo-Reyes, J., Alatriste-Mondragón, F., Razo-Flores, E. (2017). Effect of inoculum pretreatment on the microbial community structure and its performance during dark fermentation using anaerobic fluidized-bed reactors. International Journal of Hydrogen Energy, 42(15), 9589-9599.
Counts, J. A., Zeldes, B. M., Lee, L. L., Straub, C. T., Adams, M. W., Kelly, R. M. (2017). Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 9(3).
Cucciniello, R., Intiso, A., Castiglione, S., Genga, A., Proto, A., Rossi, F. (2017). Total oxidation of trichloroethylene over mayenite (Ca 12 Al 14 O 33) catalyst. Applied Catalysis B: Environmental, 204, 167-172.
Ding, C., Rogers, M. J., Yang, K. L., He, J. (2017). Loss of the ssrA genome island led to partial debromination in the PBDE respiring Dehalococcoides mccartyi strain GY50. Environmental Microbiology.
Delgado, A. G., Parameswaran, P., Fajardo-Williams, D., Halden, R. U., Krajmalnik-Brown, R. (2012). Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Microbial cell factories, 11(1), 128.
Daniewski M., Jacorzynski B., Filipek A., Balas J., Pawlizka M., Mielniczuk E. (2003). Fatty acid content in selected edible oils. Roczniki-Panstwowego-Zakladu-Higieny. 54(3), 263 - 267.
Deng, P., Foxfire, A., Xu, J., Baird, S. M., Jia, J., Delgado, K. H., Shin, R., Lu, S. E. (2017). The Siderophore Product Ornibactin Is Required for the Bactericidal Activity of Burkholderia contaminans MS14. Applied and Environmental Microbiology, 83(8), e00051-17.
Dolinová, I., Štrojsová, M., Černík, M., Němeček, J., Macháčková, J., Ševců, A. (2017). Microbial degradation of chloroethenes: a review. Environmental Science and Pollution Research. 1-22.
Dugat-Bony, E., Peyret, P., Biderre-Petit, C. (2016). New Insights into the Microbial Contribution to the Chlorine Cycle in Aquatic Ecosystems. In Lake Pavin, 285-306, Springer International Publishing.
Entzündungen, U. (2013). Hh Naumann U. E. Kastenbauer. Indikation zur Operation, 212.
Evans, E., Messerschmidt, U. (2017). Sugar beets as a substitute for grain for lactating dairy cattle. Journal of animal science and biotechnology, 8(1), 25.
Felföldi, T., Schumann, P., Mentes, A., Kéki, Z., Máthé, I., Tóth, E. M. (2017). Caenimicrobium hargitense gen. nov., sp. nov., a new member of the family Alcaligenaceae (Betaproteobacteria) from activated sludge. International journal of systematic and evolutionary microbiology, 67(3), 627-632.
Findlay M., Smoler D. F., Fogel S., Mattes T. E. (2016). Aerobic vinyl chloride metabolism in groundwater microcosms by methanotrophic and etheneotrophic bacteria. Environmental science & technology, 50(7), 3617-3625.
Franklin, L. M., Chapman, D. M., King, E. S., Mau, M., Huang, G., Mitchell, A. E. (2017). Chemical and Sensory Characterization of Oxidative Changes in Roasted Almonds Undergoing Accelerated Shelf Life. Journal of Agricultural and Food Chemistry, 65(12), 2549-2563.
Fu, X., Gu, X., Lu, S., Sharma, V. K., Brusseau, M. L., Xue, Y., Danish M., Fu, G.Y., Qiu, Z., Sui, Q. (2017). Benzene oxidation by Fe (III)-activated percarbonate: matrix-constituent effects and degradation pathways. Chemical Engineering Journal, 309, 22-29.
Futamata, H., Harayama, S., Watanabe, K. (2001). Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Applied and environmental microbiology, 67(10), 4671-4677.
Ghattas, A. K., Fischer, F., Wick, A., Ternes, T. A. (2017). Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. Water Research, 116, 268-295.
Ha, J., Zhao, X., Yu, R., Barkay, T., Yee, N. (2017). Hg (II) reduction by siderite (FeCO 3). Applied Geochemistry, 78, 211-218.
Han, W., Ye, M., Zhu, A. J., Huang, J. G., Zhao, H. T., Li, Y. F. (2016). A combined bioprocess based on solid-state fermentation for dark fermentative hydrogen production from food waste. Journal of Cleaner Production, 112, 3744-3749.
Hartman, K., van der Heijden, M. G., Roussely-Provent, V., Walser, J. C., Schlaeppi, K. (2017). Deciphering composition and function of the root microbiome of a legume plant. Microbiome, 5(1), 2.
Hatzinger, P., Fuller, M. (2016). Passive Biobarrier for Treating Co-mingled Perchlorate and RDX in Groundwater at an Active Range. CB and I Environmental, Inc. Lawrenceville United States.
Holmer, M., Hasler-Sheetal, H. (2014). Sulfide intrusion in seagrasses assessed by stable sulfur isotopes—a synthesis of current results. Frontiers in Marine Science, 1, 64.
Hosoda, A., Takahashi, T., Numano, K., Nakajou, K., Higashimoto, A., Toda, M., Arai, H., Hotta, Y., Tamura, H. (2012). Rapid reductive dechlorination of trichloroethene in contaminated ground water using biostimulation agent, BD-1, formulated from canola oil. Journal of oleo science, 61(3), 155-161.
Jayawickreme, E., Tsukayama, E., Kashdan, T. B. (2017). Examining the effect of affect on life satisfaction judgments: A within-person perspective. Journal of Research in Personality, 68, 32-37.
Jesus, J., Frascari, D., Pozdniakova, T., Danko, A. S. (2016). Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: a review. Journal of hazardous materials, 309, 37-52.
Kalam, S., Das, S. N., Basu, A., Podile, A. R. (2017). Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere. Journal of Basic Microbiology, 57(5), 376-385.
Kengen, S. W., Goorissen, H. P., Verhaart, M., Stams, A. J., van Niel, E. W., Claassen, P. A. (2009). Biological hydrogen production by anaerobic microorganisms. Biofuels, 197-221.
Khan, M. D., Khan, N., Nizami, A. S., Rehan, M., Sabir, S., Khan, M. Z. (2017). Effect of co-substrates on biogas production and anaerobic decomposition of pentachlorophenol. Bioresource Technology, 238, 492-501.
Kleindienst, S., Higgins, S. A., Tsementzi, D., Chen, G., Konstantinidis, K. T., Mack, E. E., Löffler, F. E. (2017). ‘Candidatus Dichloromethanomonas elyunquensis’ gen. nov., sp. nov., a dichloromethane-degrading anaerobe of the Peptococcaceae family. Systematic and Applied Microbiology, 40(3), 150-159.
Kouznetsova I., Mao X., Robinson C., Barry D. A., Gerhard J. I., McCarty P. L. (2010) Biological reduction of chlorinated solvents: Batch-scale geochemical modeling, Advances in Water Resources, 33(9), 969-986.
Krajačić, G., Duić, N., Vujanović, M., Kılkış, Ş., Rosen, M. A. (2016). Sustainable development of energy, water and environment systems for future energy technologies and concepts.
Kueper, B. H., Stroo, H. F., Vogel, C. M., Ward, C. H. (2014). Chlorinated solvent source zone remediation (Vol. 7). Springer Science & Business.
Kumar, G., Sivagurunathan, P., Sen, B., Kim, S. H., Lin, C. Y. (2017). Mesophilic continuous fermentative hydrogen production from acid pretreated de-oiled jatropha waste hydrolysate using immobilized microorganisms. Bioresource Technology.
Kuo, Y. C., Wang, S. Y., Chang, Y. M., Chen, S. H., Kao, C. M. (2014). Control of trichloroethylene plume migration using a biobarrier system: a field-scale study. Water Science and Technology, 69(10), 2074-2078.
Lai, A., Aulenta, F., Mingazzini, M., Palumbo, M. T., Papini, M. P., Verdini, R., Majone, M. (2017). Bioelectrochemical approach for reductive and oxidative dechlorination of chlorinated aliphatic hydrocarbons (CAHs). Chemosphere, 169, 351-360.
Lai, A., Aulenta, F., Mingazzini, M., Palumbo, M. T., Papini, M. P., Verdini, R., Majone, M. (2017). Bioelectrochemical approach for reductive and oxidative dechlorination of chlorinated aliphatic hydrocarbons (CAHs). Chemosphere, 169, 351-360.
Landry, Z., Swan, B. K., Herndl, G. J., Stepanauskas, R., Giovannoni, S. J. (2017). SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. mBio 8: e00413-17.
Lee, P. K., Cheng, D., West, K. A., Alvarez‐Cohen, L., He, J. (2013). Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. Environmental microbiology, 15(8), 2293-2305.
Leitão, P., Rossetti, S., Danko, A. S., Nouws, H., Aulenta, F. (2016). Enrichment of Dehalococcoides mccartyi spp. from a municipal activated sludge during AQDS-mediated bioelectrochemical dechlorination of 1, 2-dichloroethane to ethene. Bioresource technology, 214, 426-431.
Li J., de Toledo R. A., Shim H. (2017). Multivariate optimization for the simultaneous bioremoval of BTEX and chlorinated aliphatic hydrocarbons by Pseudomonas plecoglossicida. Journal of Hazardous Materials, 321, 238-246.
Li, H., Jiang, Z., Yang, X., Yu, L., Zhang, G., Wu, J., Liu, X. (2015). Sustainable resource opportunity for cane molasses: use of cane molasses as a grinding aid in the production of Portland cement. Journal of Cleaner Production, 93, 56-64.
Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., Wang, J., Han, Y., Chai, Y., Guo, T., Yan, N., Warburton, M.L., Cheng, Y., Hao, X.,Liu, J. (2013). Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature genetics, 45(1), 43-50.
Lien, P. J., Yang, Z. H., Chang, Y. M., Tu, Y. T., Kao, C. M. (2016). Enhanced bioremediation of TCE-contaminated groundwater with coexistence of fuel oil: Effectiveness and mechanism study. Chemical Engineering Journal, 289, 525-536.
Long, C. M., Borden, R. C. (2006). Enhanced reductive dechlorination in columns treated with edible oil emulsion. Journal of contaminant hydrology, 87(1), 54-72.
Lukić B., Panico A., Huguenot D., Fabbricino M., van Hullebusch E. D., Esposito G. (2017) A review on the efficiency of landfarming integrated with composting as a soil remediation treatment. Environmental Technology Reviews, 6(1), 94-116.
Maire J., Fatin-Rouge N. (2017) Surfactant foam flushing for in situ removal of DNAPLs in shallow soils. Journal of Hazardous Materials, 321, 247-255.
Majone, M., Verdini, R., Aulenta, F., Rossetti, S., Tandoi, V., Kalogerakis, N. Fava, F. (2015) In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites. New biotechnology, 32(1), 133-146.
Malina, J., Pohland, F. (1992). Design of Anaerobic Processes.
Mao, X., Polasko, A., Alvarez-Cohen, L. (2017). Effects of Sulfate Reduction on Trichloroethene Dechlorination by Dehalococcoides-Containing Microbial Communities. Applied and Environmental Microbiology, 83(8), e03384-16.
Mao, X., Oremland, R. S., Liu, T., Gushgari, S., Landers, A. A., Baesman, S. M., Alvarez-Cohen, L. (2017). Acetylene Fuels TCE Reductive Dechlorination by Defined Dehalococcoides/Pelobacter Consortia. Environmental science & technology, 51(4), 2366-2372.
Matturro, B., Rossetti, S. (2015). GeneCARD-FISH: Detection of tceA and vcrA reductive dehalogenase genes in Dehalococcoides mccartyi by fluorescence in situ hybridization. Journal of microbiological methods, 110, 27-32.
McGuire, T. M., Adamson, D., Burcham, M. S., Bedient, P. B., Newell, C. J. (2016). Evaluation of Long‐Term Performance and Sustained Treatment at Enhanced Anaerobic Bioremediation Sites. Groundwater Monitoring & Remediation, 36(2), 32-44.
Meckenstock, R. U., Elsner, M., Griebler, C., Lueders, T., Stumpp, C., Aamand, J., Agathos, S.N., Albrechtsen, H.J., Bastiaens, L., Bjerg, P.L., Boon, N., Dejonghe, W., Huang, W.E., Schmidt, S.I., Smolders, E., Sorensen, S.R., Springael, D., Boris M. van Breukelen. (2015). Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. Environ. Sci. Technol, 49(12), 7073-7081.
Megharaj M., Ramakrishnan B., Venkateswarlu K., Sethunathan N., Naidu R., (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ. Int. 37, 1362–1375.
Minetti R. C. P., Macaño H. R., Britch J., Allende M. C. (2017). In situ chemical oxidation of BTEX and MTBE by ferrate: pH dependence and stability, Journal of Hazardous Materials, 324, 448-456.
Mirza, B. S., Sorensen, D. L., McGlinn, D. J., Dupont, R. R., McLean, J. E. (2017). Dehalococcoides and general bacterial ecology of differentially trichloroethene dechlorinating flow-through columns. Applied Microbiology and Biotechnology, 1-15.
Miyata R., Adachi K., Tani H., Kurata S., Nakamura K., Tsuneda S., Sekiguchi Y., Noda N. (2010). Quantitative detection of chloroethene-reductive bacteriaDehalococcoides spp. using alternately binding probe competitive polymerase chain reaction. Molecular and Cellular Probes Volume 24, Issue 3, Pages 131–137.
Moreau, P., Diggle, S. P., Friman, V. P. (2017). Bacterial cell‐to‐cell signaling promotes the evolution of resistance to parasitic bacteriophages. Ecology and Evolution, 7(6), 1936-1941.
Morelli I.S., Saparrat M.C.N., Del Panno M.T., Coppotelli B.M., Arrambari A. (2013) Bioremediation of PAH-contaminated soil by fungi In Gultapeh, I.M., Danesh Y.R., Varma A. (Eds.), Fungi as Bioremediators, Springer, Berlin, Page 159–179.
Muhammad F. Aslam., Gulshan Irshad., Farah Naz., Muhammad N. Aslam., Raees Ahmed. (2016). Effect of seed-borne mycoflora on germination and fatty acid profile of peanuts. Pakistan Journal of Phytopathology, 27(2), 131-138.
Neale, H., Deshappriya, N., Arnold, D., Wood, M. E., Whiteman, M., Hancock, J. T. (2017). Hydrogen sulfide causes excision of a genomic island in Pseudomonas syringae pv. phaseolicola. European Journal of Plant Pathology, 1-11.
Newell, C., Seyedabbasi, A., Coyle, C., Wichman, M., Geibel, N., Leeson, A. (2013). Enhanced attenuation of unsaturated chlorinated solvent source zones using direct hydrogen delivery. Environmentsl security technology certification Program alexandris va.
Ng, D. H., Kumar, A., Cao, B. (2016). Microorganisms meet solid minerals: interactions and biotechnological applications. Applied microbiology and biotechnology, 100(16), 6935-6946.
Oh, T. S., Kim, Y. J., Kang, H. Y., Kim, C. K., Cho, S. Y., Lee, H. J. (2017). RNA expression analysis of efflux pump genes in clinical isolates of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis in South Korea. Infection, Genetics and Evolution.
Olaniran, A. O., Balgobind, A., Kumar, A., Pillay, B. (2017) Treatment additives reduced arsenic and cadmium bioavailability and increased 1, 2-dichloroethane biodegradation and microbial enzyme activities in co-contaminated soil. Journal of Soils and Sediments, 1-11.
Overbeeke, G. (2017). Microbial Repopulation Following In Situ STAR Remediation.
Özgür, E., Afsar, N., de Vrije, T., Yücel, M., Gündüz, U., Claassen, P. A., Eroglu, I. (2010). Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus. Journal of Cleaner Production, 18, 23-28.
Philips, J., Maes, N., Springael, D., Smolders, E. (2013). Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: Experimental demonstration in diffusion-cells. Journal of contaminant hydrology, 147, 25-33.
Panagiotopoulos, I. A., Karaoglanoglou, L. S., Koullas, D. P., Bakker, R. R., Claassen, P. A., Koukios, E. G. (2015). Technical suitability mapping of feedstocks for biological hydrogen production. Journal of Cleaner Production, 102, 521-528.
Park, J., Yamashita, N., Park, C., Shimono, T., Takeuchi, D. M., Tanaka, H. (2017). Removal characteristics of pharmaceuticals and personal care products: Comparison between membrane bioreactor and various biological treatment processes. Chemosphere, 179, 347-358.
Paul, V. G., Wronkiewicz, D. J., Mormile, M. R. (2017). Impact of elevated CO 2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO 2 sequestration. Applied Geochemistry, 78, 250-271.
Perruchon, C., Chatzinotas, A., Omirou, M., Vasileiadis, S., Menkissoglou-Spiroudi, U., Karpouzas, D. G. (2017). Isolation of a bacterial consortium able to degrade the fungicide thiabendazole: the key role of a Sphingomonas phylotype. Applied microbiology and biotechnology, 101(9), 3881-3893.
Raghukumar, S. (2017). Fungi in Coastal and Oceanic Marine Ecosystems: Marine Fungi. Springer.
Ristic V., and Ristic G. (2003). Role and importance of dietary polyunsaturated fatty acids in the prevention and therapy of atherosclerosis. Med. Pregled 56 (1-2), 50 - 53.
Ritalahti, K. M., Amos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S., Löffler, F. E. (2006). Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and environmental microbiology, 72(4), 2765-2774.
Robertson, E. K., Thamdrup, B. (2017). The fate of nitrogen is linked to iron (II) availability in a freshwater lake sediment. Geochimica et Cosmochimica Acta, 205, 84-99.
Salman M., Gerhard, J. I., Major D. W., Pironi P., Hadden R. (2015) Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering. Journal of hazardous materials, 285, 346-355.
Soleimani, M., Amini, N. (2017). Remediation of Environmental Pollutants Using Nanoclays. In Nanoscience and Plant–Soil Systems, 279-289. Springer International Publishing.
Sari, A., Tuzen, M., Kocal, İ. (2017). Application of chitosan‐modified pumice for antimony adsorption from aqueous solution. Environmental Progress & Sustainable Energy.
Sarris, D., Matsakas, L., Aggelis, G., Koutinas, A. A., Papanikolaou, S. (2014). Aerated vs non-aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyces cerevisiae under non-aseptic conditions. Industrial Crops and Products, 56, 83-93.
Schmidt, S. I., Cuthbert, M. O., Schwientek, M. (2017). Towards an integrated understanding of how micro scale processes shape groundwater ecosystem functions. Science of the Total Environment, 592, 215-227.
Schöftner, P., Watzinger, A., Holzknecht, P., Wimmer, B., Reichenauer, T. G. (2016). Transpiration and metabolisation of TCE by willow plants–a pot experiment. International journal of phytoremediation, 18(7), 686-692.
Shankar, S. (2017). Renewable and Nonrenewable Energy Resources: Bioenergy and Biofuels. In Principles and Applications of Environmental Biotechnology for a Sustainable Future. 293-314. Springer Singapore.
Shanmugam B. K., Mahadevan, S. (2015). Metabolism and biotransformation of azo dye by bacterial consortium studied in a bioreaction calorimeter. Bioresource technology, 196, 500-508.
Sharma, S. (2016). Specific polarizability of sand-clay mixtures with varying ethanol concentration (Doctoral dissertation, Rutgers University-Graduate School-Newark).
Silambarasan, S., Vangnai, A. S. (2017). Plant-growth promoting Candida sp. AVGB4 with capability of 4-nitroaniline biodegradation under drought stress. Ecotoxicology and Environmental Safety, 139, 472-480.
Silva, J. A., Crimi, M., Palaia, T., Ko, S., & Davenport, S. (2017). Field demonstration of polymer-amended in situ chemical oxidation (PA-ISCO). Journal of Contaminant Hydrology, 199, 36-49.
Sinha, P., Pandey, A. (2011). An evaluative report and challenges for fermentative biohydrogen production. International Journal of Hydrogen Energy, 36(13), 7460-7478.
Soleimani M. Amini N. (2017). Remediation of Environmental Pollutants Using Nanoclays. In Nanoscience and Plant–Soil Systems. 279-289. Springer International Publishing.
Sompong, O. (2017). Microbial Population Optimization for Control and Improvement of Dark Hydrogen Fermentation. In Fermentation Processes. InTech.
Steffan, R. J., Schaefer, C. E. (2016). Current and Future Bioremediation ApplicationsBioremediation Applications: Bioremediation from a Practical and Regulatory Perspective. In Organohalide-Respiring Bacteria. 517-540. Springer Berlin Heidelberg.
Stroo, H. F., Ward, C. H. (2010). In situ remediation of chlorinated solvent plumes. Springer Science & Business Media.
Su, C. (2017). Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. Journal of hazardous materials, 322, 48-84.
Techtmann, S. M., Hazen, T. C. (2016). Metagenomic applications in environmental monitoring and bioremediation. Journal of Industrial Microbiology & Biotechnology, 43(10), 1345-1354.
Tillotson, J. M., Borden, R. C. (2017). Rate and Extent of Chlorinated Ethene Removal at 37 ERD Sites. Journal of Environmental Engineering, 143(8), 04017028.
Temme, H. R., Sande, K., Yan, T., Novak, P. J. (2017). Rapid Enrichment of Dehalococcoides-Like Bacteria by Partial Hydrophobic Separation. Applied and environmental microbiology, 83(6), e02946-16.
Thornton, S. F., Morgan, P., Rolfe, S. A. (2017). Bioremediation of Hydrocarbons and Chlorinated Solvents in Groundwater: Characterisation, Design and Performance Assessment. Hydrocarbon and Lipid Microbiology Protocols: Pollution Mitigation and Waste Treatment Applications, 11-64.
Tomko, T. A., Dunlop, M. J. (2017). Expression of heterologous sigma factor expands the searchable space for biofuel tolerance mechanisms. ACS Synthetic Biology.
Tratnyek, P. G., Johnson, R. L. (2017). SERDP Project ER-2308.
Uprety, B. K., Reddy, J. V., Dalli, S. S., Rakshit, S. K. (2017). Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams. Bioresource Technology, 235, 309-315.
Urbaniec, K., Grabarczyk, R. (2009). Raw materials for fermentative hydrogen production. Journal of Cleaner production, 17(10), 959-962.
Woese, C. R. (1987). Bacterial evolution. Microbiological reviews, 51(2), 221.
Wang Y., Hatt J. K., Tsementzi D., Rodriguez-R L. M., Ruiz-Pérez C. A., Weigand M. R., Spain J. C. (2017). Quantifying the importance of the rare biosphere for microbial community response to organic pollutants in a freshwater ecosystem. Applied and Environmental Microbiology, 83(8), e03321-16.
Wang, S. Y., Chen, S. C., Lin, Y. C., Kuo, Y. C., Chen, J. Y., Kao, C. M. (2016). Acidification and sulfide formation control during reductive dechlorination of 1, 2-dichloroethane in groundwater: Effectiveness and mechanistic study. Chemosphere, 160, 216-229.
Wang, W., Wu, Y. (2017). Combination of zero-valent iron and anaerobic microorganisms immobilized in luffa sponge for degrading 1, 1, 1-trichloroethane and the relevant microbial community analysis. Applied Microbiology and Biotechnology, 101(2), 783-796.
Wang, Y., Hatt, J. K., Tsementzi, D., Rodriguez-R, L. M., Ruiz-Pérez, C. A., Weigand, M. R., Kizer, H., Maresca, G., Krishnan, R., Poretsky, R., Spain, J. C., Konstantinidis, K.T., (2017). Quantifying the importance of the rare biosphere for microbial community response to organic pollutants in a freshwater ecosystem. Applied and Environmental Microbiology, 83(8), e03321-16.
Wei, K., Grostern, A., Chan, W. W., Richardson, R. E., Edwards, E. A. (2016). Electron Acceptor Interactions Between Organohalide-Respiring Bacteria: Cross-Feeding, Competition, and Inhibition. In Organohalide-Respiring Bacteria, Springer Berlin Heidelberg, 283-308.
Wen, C., Sheng, H., Ren, L., Dong, Y., Dong, J. (2017). Study on The Removal of Hexavalent Chromium from Contaminated Groundwater using Emulsified Vegetable Oil. Process Safety and Environmental Protection. Environmental Protection, 109, 599-608.
Wen, L. L., Zhang, Y., Chen, J. X., Zhang, Z. X., Yi, Y. Y., Tang, Y., Rittmann, B.E., Zhao, H. P. (2017). The dechlorination of TCE by a perchlorate reducing consortium. Chemical Engineering Journal, 313, 1215-1221.
Xu, Q., Zhu, G. (2011). Screening, identification and tolerance of Saccharomyces cerevisiae for wild kiwifruit wine fermentation [J]. China Brewing, 7, 034.
Xu, Y., He, Y., Tang, X., Brookes, P. C., Xu, J. (2017). Reconstruction of microbial community structures as evidences for soil redox coupled reductive dechlorination of PCP in a mangrove soil. Science of The Total Environment, 596, 147-157.
Yu. (2016). Extending the Chemical and Optical Sensitivity of the Scanning Tunneling Microscope. University of California, Irvine.
Yohda, M., Ikegami, K., Aita, Y., Kitajima, M., Takechi, A., Iwamoto, M., Fukuda, T., Temura, N., Shibasaki, J., Koike, S., Komatsu, D., Miyagi, S., Nishimura, M., Uchino, Y., Shiroma, A., Shimoji, M., Tamotsu, H., Ashimine, N., Shinzato, M., Ohki, S., Nakano, K., Teruya, K., Satou, K., Hirano, T., Yagi, O. (2017). Isolation and genomic characterization of a Dehalococcoides strain suggests genomic rearrangement during culture. Scientific reports, 7(1), 2230.
Yoshikawa, M., Zhang, M., Toyota, K. (2017). Integrated Anaerobic-Aerobic Biodegradation of Multiple Contaminants Including Chlorinated Ethylenes, Benzene, Toluene, and Dichloromethane. Water, Air, & Soil Pollution, 228(1), 25.
Zhang, P., He, Z., Van Nostrand, J. D., Qin, Y., Deng, Y., Wu, L., Tu, Q., Wang, J., Schadt, C.W., Fields, W., Hazen, T. C., Arkin, A.P., Stahl, D.A., Zhou, J. (2017). Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer. Environmental science & technology, 51(7), 3609-3620.
Zhang, X., Yang, C., Li, J., Meng, Q., Raza, H., Zhang, L. (2016). Enzymatic synthesis of mannitol dioctanoate and its utilisation in the preparation of structured edible oil. International Journal of Food Science & Technology, 51(3), 588-594.
Zhao, H. P., Schmidt, K. R., Lohner, S., Tiehm, A. (2011). Robustness of an aerobic metabolically vinyl chloride degrading bacterial enrichment culture. Water Science and Technology, 64(9), 1796-1803.
Zhu, J., Sun, D. (2016). Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone. Journal of contaminant hydrology, 192, 158-164.
Zhang, S., Wondrousch, D., Cooper, M., Zinder, S. H., Schüürmann, G., Adrian, L. (2017). Anaerobic Dehalogenation of Chloroanilines by Dehalococcoides mccartyi Strain CBDB1 and Dehalobacter Strain 14DCB1 via Different Pathways as Related to Molecular Electronic Structure. Environmental Science & Technology, 51(7), 3714-3724.
Zhao, H., Sun, W., Wu, X., Gao, B. (2017). The effect of the material factors on the concrete resistance against carbonation. KSCE Journal of Civil Engineering, 1-10.
Zhong, L., Truex, M. J., Kananizadeh, N., Li, Y., Lea, A. S. and Yan, X., (2015) Delivery of vegetable oil suspensions in a shear thinning fluid for enhanced bioremediation, Journal of contaminant hydrology, 175, 17-25.
王柏翔,(2011),糖蜜醱酵廢液與飲料用糖漿廢品混合醱酵產氫之研究,逢甲大學化學工程學系碩士論文。
王祖興、謝紅貞編譯,David P. Clark原著,(2008),分子生物學中英文導讀本,高立圖書有限公司。
吳翊暐,(2015),壓榨酵母利用甘蔗糖蜜為基質之菌株篩選、饋料批次培養及儲藏安定性,國立中興大學食品暨應用生物科技學系碩士論文。
吳靜芷,(2015),硫化氫中毒疾病診斷輔助報告,行政院農委會家畜衛生試驗所。
李國興、張嘉修、林屏杰、林秋裕、吳石乙、洪俊雄,(2007),厭氧生物產氫之研發,化工,第54卷第1期,69-106。
林財富,(2008),土壤與地下水污染整治:原理與應用,中華民國環境工程學會。
凃秀娟,(2007),奈米級零價鐵懸浮液之應用性探討:不同環境氣氛下對於水溶液中 TCE 之降解反應途徑與成效、在土壤中之傳輸現象及對菌落數之影響,國立中山大學環境工程研究所碩士論文。
高雄市環境保護局,(2017),土壤及地下水污染整治資訊網(http://ts01.gi-tech.com.tw/kssgi_public/Business_Introduction/P_Tech_Intro.aspx)
張永宜,(2007),乳化奈米級零價鐵處理水溶液中之三氯乙烯,國立中山大學環境工程研究所碩士論文。
陳逸明,(2010),以乳化型基質處理受三氯乙烯污染之地下水」,國立中山大學環境工程研究所碩士論文。
陳碩修,(2000),氫氣對地下水中四氯乙烯厭氧生物分解之研究,國立中興大學環境工程學研究所碩士論文。
黃俊瑋,(2011),糖蜜廢液與紡織褪漿廢水合併醱酵產氫之研究,逢甲大學化學工程學系碩士論文。
劉彥妏,(2010),糖蜜廢液醱酵產氫之研究,逢甲大學綠色能源科技碩士學位學程碩士論文。
劉祐誠,(2011),絕對厭氧異化性鐵還原微生物新種特性之研究,國立中興大學土壤環境科學系所碩士論文。
環保署,(2016),行政院環保署土壤及地下整治網(http://sgw.epa.gov.tw/)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.191.214
論文開放下載的時間是 校外不公開

Your IP address is 3.145.191.214
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code