Responsive image
博碩士論文 etd-0728117-132820 詳細資訊
Title page for etd-0728117-132820
論文名稱
Title
雙向可變結構之DC-DC轉換器
Bi-directional Variable-structure DC-DC Converter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
167
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-23
繳交日期
Date of Submission
2017-08-29
關鍵字
Keywords
最佳效率切換點、DC-DC轉換器、可變結構、寬電壓範圍、高電壓轉換比
High Voltage Conversion Ratio, Optimal Efficiency Switching Point, DC-DC Converter, Variable Structure, Wide Voltage Range
統計
Statistics
本論文已被瀏覽 5692 次,被下載 17
The thesis/dissertation has been browsed 5692 times, has been downloaded 17 times.
中文摘要
本論文提出一具高電壓轉換比與寬電壓範圍之雙向可變結構DC-DC轉換器,所提出之雙向DC-DC轉換器可依據不同電壓等級變換電路結構,並操作於六種不同的電路架構。如將本文提出之電路架構分為A、B兩端,以功率由A端流至B端為降壓模式時,可操作於單一降壓(Single Buck)架構、交錯式降壓(Interleaved Buck)架構及雙降壓(Dual Buck)架構;以功率由B端流至A端為升壓模式時,則可操作於單一升壓(Single Boost)架構、交錯式升壓(Interleaved Boost)架構及雙升壓(Dual Boost)架構。論文中並針對各架構進行損失推導,以確認於不同電壓範圍與不同架構時的最佳效率切換點。因所提出之雙向可變結構DC-DC轉換器具有對稱性,故透過兩組所提之雙向DC-DC轉換器串接,可實現更寬電壓範圍的雙向可升且可降泛用DC-DC轉換器。論文中實作一A端電壓200V,B端電壓25V~150V,B端電流1A~10A之雙向可變結構DC-DC轉換器,及輸入電壓200V,輸出電壓25V~750V之雙向可升且可降泛用DC-DC轉換器。實驗結果針對不同輸出電壓等級於各電路架構下的開關訊號、電感電流及效率進行量測與比較,並驗證雙向可升且可降泛用DC-DC轉換器之可行性。由效率模擬及量測結果可以看出,電路可依輸出電壓與電流需求使轉換器操作在最佳效率。實測結果證實所提之轉換器可藉由變換結構讓電路操作在最佳效率,且轉換器最高轉換效率可達98.81%。
Abstract
A bi-directional variable-structure DC-DC converter with high voltage conversion ratio and wide voltage range is proposed in this thesis. The proposed bi-directional DC-DC converter can be operated in six different circuit structures according to the input and output voltage levels. The circuit configuration of proposed bi-directional DC-DC converter can be divided into terminals A and B. Defining the power flowing from terminal A to terminal B as buck mode, the proposed converter can be operated in single buck, interleaved buck and dual buck structures. On the contrary, defining the power flowing from terminal B to terminal A as boost mode, the proposed converter can be operated in single boost, interleaved boost and dual boost structures. The loss formulas are also derived to identify the optimal efficiency switching points for different circuit structures at different voltage ranges. Due to the duality of proposed bi-directional DC-DC converter, a universal bi-directional DC-DC converter is also proposed in this thesis by cascading two proposed converters. Wider voltage range and step-up and step-down voltages at terminals A and B can therefore be achieved. A prototype for the proposed bi-directional DC-DC converter with a rated voltage of 200V at terminal A, a rated voltage between 25V and 150V at terminal B and a rated current of between 1A and 10A at terminal B is designed and implemented in this thesis. A prototype with a rated input voltage of 200V and a rated output voltage between 25V and 750V is also implemented for the proposed universal bi-directional DC-DC converter. Experimental results show and compare the waveforms of driving signals of switches and inductor currents and conversion efficiencies under different voltage levels and different circuit structures. The validity of proposed universal bi-directional DC-DC converter is also verified. From the simulation and experimental results of conversion efficiency, the optimal efficiency switching points for different circuit structures under different voltage and current levels can be determined. Experimental results also indicate that a maximum conversion efficiency of 98.81% can be achieved for the proposed bi-directional variable-structure DC-DC converter.
目次 Table of Contents
論文審定書+i
誌謝 +ii
摘要+iii
Abstract+iv
目錄+vi
圖目錄+viii
表目錄+xv
第一章 緒論+1
1-1研究背景+1
1-2研究動機+2
1-3論文大綱+3
第二章 相關電路架構介紹+4
2-1單向高降壓比轉換器+4
2-2單向高升壓比轉換器+5
2-3雙向升降壓轉換器+7
第三章 雙向可變結構之DC-DC轉換器介紹+11
3-1 A端至B端操作模式及損失分析+14
3-1-1單一降壓架構之動作模式及損失分析+16
3-1-2交錯式降壓架構之動作模式及損失分析+22
3-1-3雙降壓架構之動作模式及損失分析+30
3-2 B端至A端操作模式及損失分析+39
3-2-1單一升壓架構之動作模式及損失分析+41
3-2-2交錯式升壓架構之動作模式及損失分析+47
3-2-3雙升壓架構之動作模式及損失分析+55
3-3雙向可升且可降之泛用DC-DC轉換器操作模式+63
第四章 電路設計與控制+69
4-1電路元件與參數設計+69
4-1-1電感設計及鐵芯選擇+69
4-2-1開關驅動電路+72
4-2-2取樣電路+73
4-3程式設計流程+75
第五章 電路測試規格與實驗結果+78
5-1雙向可變結構DC-DC轉換器A端至B端各架構實驗波形+80
5-1-1單一降壓架構+80
5-1-2交錯式降壓架構+86
5-1-3雙降壓架構+91
5-2雙向可變結構DC-DC轉換器B端至A端各架構實驗波形+95
5-2-1單一升壓架構+95
5-2-2交錯式升壓架構+101
5-2-3雙升壓架構+106
5-3雙向泛用DC-DC轉換器之實驗波形+110
5-3-1雙降壓架構+110
5-3-2雙升壓架構+112
5-3-3堆疊降升壓架構+114
5-4輸出效率估計及實測比較曲線+116
5-4-1 A端至B端降壓架構之估測及實測曲線+116
5-4-2 B端至A端升壓架構之估測及實測曲線+131
第六章 結論及未來研究方向+146
6-1結論+146
6-2未來研究方向+147
參考文獻+148
參考文獻 References
[1] A. Ipakchi, F. Albuyeh, “Grid of the Future,” IEEE Power and Energy Magazine, vol.7, no.2, pp. 52-62, March-April. 2009.
[2] M. Sameeullah, S. Chandel, “Design and Analysis of Solar Electric Rickshaw: A Green Transport Model,” in Proc. IEEE ICEETS, Nagercoil, pp. 206–211, Apr. 2016.
[3] “全球主要國家電動車示範運行推動現況,” Available at:
http://www.car-safety.org.tw/uploads/Rule/
[4] “「電動車最普及的國家」挪威:計畫2025年前全面禁售汽油車,” Available at: http://www.seinsights.asia/article/3289/3271/4239
[5] “Vehicle-to-Grid,” Available at:
http://www.cenex.co.uk/vehicle-to-grid/
[6] V. Verma, A. Kumar, “Smart Parking for PHEV/EV using Solid State Split Voltage Bidirectional Converter at UPF with V2G/G2V Capability,” in Proc. IEEE PEDES, Trivandrum, pp. 1-6, Dec. 2016.
[7] M. Yilmaz, P. T. Krein, “Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles,” IEEE Transaction on Power Electronics, vol. 28, no.5, pp.2151-2169, May 2013.
[8] C. Pang, P. Dutta, M. Kezunovic, “BEVs/PHEVs as Dispersed Energy Storage for V2B Uses in the Smart Grid,” IEEE Transactions on Smart Grid, vol. 3, no.1, pp. 473-482, Nov. 2011.
[9] W. Su, H. Eichi, W. Zeng, M. Y. Chow, “A Survey on the Electrification of Transportation in a Smart Grid Environment,” IEEE Transactions on Industrial Informatics, vol. 8, no.1, pp.1-10, Oct. 2011.
[10] C. Marinescu, L. Barote, “Toward a Practical Solution for Residential RES Based EV Charging System,” in Proc. IEEE OPTIM, Brasov, pp. 771-776, May 2017.
[11] S. Li, C. C. Mi, “Wireless Power Transfer for Electric Vehicle Applications,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no.1, pp. 4-17, Mar. 2015.
[12] 陳思維,“具大範圍升降壓比之雙向DC/DC轉換器”,國立中山大學電機工程研究所,中華民國105年8月。
[13] C. T. Pan, C. F. Chung, C. C. Chu, H. C. Cheng, “A Novel Transformer-Less Interleaved Four-Phase High Step-Down DC Converter with Low Switch Voltage Stress,” in Proc. IEEE IPEC, Hiroshima, pp. 3379-3385, May 2014.
[14] K. I. Hwu, W. Z. Jiang, P. Y. Wu, “An Expandable Four-Phase Interleaved High Step-Down Converter with Low Switch Voltage Stress and Automatic Uniform Current Sharing,” IEEE Transactions on Industrial Electronics, vol. 63, no.10, pp. 6064-6072, Oct. 2016.
[15] C. T. Pan, C. F. Chuang, C. C. Chu, “A Novel Transformerless Interleaved High Step-Down Conversion Ratio DC–DC Converter with Low Switch Voltage Stress,” IEEE Transactions on Industrial Electronics, vol. 61, no.10, pp. 5290-5299., Oct. 2014.
[16] G. P. Muralidharan, K. Bhaskar, “High Step-Down Conversion Ratio Interleaved DC-DC Converter,” in Proc. IEEE ICECCT, Coimbatore, pp. 1–4, Mar. 2015.
[17] C. T. Pan, C. F. Chung, C. C. Chu, “A Novel Transformer-Less Adaptable Voltage Quadrupler DC Converter with Low Switch Voltage Stress,” IEEE Transactions on Power Electronics, vol. 29, no.9, pp. 4787-4796, Sept. 2014.
[18] K. K. Law, K. W. E. Cheng, Y. P. B. Yeung, “Design and Analysis of Switched-Capacitor-Based Step-Up Resonant Converters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no.5, pp. 943-948, May 2005.
[19] F. C. Lee, “High-Frequency Quasi-Resonant Converter Technologies,” Proceedings of the IEEE, vol. 76, no.4, pp. 377-390, Apr.1988.
[20] Y. R. de Novaes, A. Rufer, I. Barbi, “A New Quadratic, Three-Level, DC/DC Converter Suitable for Fuel Cell Applications,” in Proc. IEEE PCCON, Nagoya, pp. 601-607, Apr. 2007.
[21] F. L. Tofoli, D. C. Pereira, W. J. Paula, D. S. O. Júnior , “Survey on Non-Isolated High-Voltage Step-Up DC-DC Topologies Based on the Boost Converter,” IET Power Electronics, vol. 8, no.10, pp. 2044-2057, Sep. 2015.
[22] B. M. Reddy, P. Samuel, “A Comparative Analysis of Non-Isolated Bi-directional DC-DC Converters,” in Proc. IEEE ICPEICES, Delhi, pp.1-6, Feb. 2017.
[23] F. H. Khan, L. M. Tolbert, “Bi-directional Power Management and Fault Tolerant Feature in a 5-kW Multilevel DC-DC Converter with Modular Architecture,” IET Power Electronics, vol. 2, no.5, pp. 595-604, Sept. 2009.
[24] B. -R. Lin, J. -J. Chen, F. -Y. Hsieh, “Analysis and Implementation of a Bidirectional Converter with High Conversion Ratio,” in Proc IEEE ICIT, Chengdu, pp. 1-6, Apr. 2008.
[25] M. R. Mohammadi, H. Farzanehfard, “A New Bidirectional ZVS-PWM Cuk Converter with Active Clamp,” in Proc. IEEE ICEE, Tehran, pp. 1–6, May. 2011.
[26] K. H. Liu, F. C, Lee, “Zero-Voltage Switching Technique in DC/DC Converters,” in Proc. IEEE PESC, Vancouver, pp. 58–70, Jun. 1986.
[27] A. Ahmad, R. K, Singh, R. Mahanty, “Bidirectional Quadratic Converter for Wide Voltage Conversion Ratio,” in Proc. IEEE PEDES, Trivandrum, pp. 1–5, Dec. 2016.
[28] P. Jose, N. Mohan, “A Novel ZVS Bidirectional Cuk Converter for Dual Voltage Systems in Automobiles,” in Proc. IEEE IECON, Roanoke, pp. 117–122, Nov. 2003.
[29] R. M. Schupbach, J. C. Balda, “Comparing DC-DC Converters for Power Management in Hybrid Electric Vehicles,” in Proc. IEEE IEMD, Madison, pp. 1369–1374, Jun. 2003.
[30] I. D. Kim, S. H. Paeng, J. W. Ahn, E. C. Nho, J. S. Ko, “New Bidirectional ZVS PWM Sepic/Zeta DC-DC Converter,” in Proc. IEEE ISIE, Vigo, pp. 555–560, Jun. 2007.
[31] L. Ni, D. J. Patterson, J. L. Hudgins, “High Power Current Sensorless Bidirectional 16-Phase Interleaved DC-DC Converter for Hybrid Vehicle Application,” IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1141-1151, Mar. 2012.
[32] S. Waffler, J. W. Kolar, “A Novel Low-Loss Modulation Strategy for High-Power Bidirectional Buck+ Boost Converters,” IEEE Transactions on Power Electronics. vol. 24, no. 6, pp. 1589–1599, Jun. 2009.
[33] C. -C. Lin, L. S. Yang, G. W. Wu, “Study of A Non-Isolated Bidirectional DC-DC Converter,” IET Power Electronics. vol. 6, no. 1, pp. 30–37, Jan. 2013.
[34] C. H. Li, Y. K. Lo, H. J. Chiu, T. Y. Chen, “Accurate Power-Loss Estimation for Continuous-Current-Conduction-Mode Synchronous Buck Converters,” in Proc. IEEE ICASID, Taipei, pp. 1–5, Aug. 2012.
[35] N. Mohan, T. M. Undeland, W. P. Robbins, “Power Electronics, Converter,Applications and Designs, ” New York: Wiley, 1989.
[36] R. W. Erickson, D. Maksimovic, “Fundamentals of Power Electronics,” Boulder, Colorado, 2001.
[37] “Magnetic Components for Power Conversion Unit,” Available at:
www.amogreentech.com
[38] “降壓轉換器效率之分析,”Available at:
http://www.richtek.com/Design Support/Technical Document/AN005
[39] “AMO Products,” Available at: www.amoscore.com
[40] 侯志英,“同步整流降壓轉換器之驅動器的研究”,國立台北科技大學,中華民國97年7月。
[41] 符曉、朱洪順,“TMS320F2833X DSP應用開發與實踐”,北京航空航天大學出版社。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code