Responsive image
博碩士論文 etd-0728117-135025 詳細資訊
Title page for etd-0728117-135025
論文名稱
Title
大麻酚受體激化物WIN 55,212-2促進TRAIL誘導之細胞凋亡研究
The Synthetic Cannabinoid WIN 55,212-2 Potentiates TRAIL-Induced Apoptosis through Modulation of Death Receptors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-22
繳交日期
Date of Submission
2017-08-28
關鍵字
Keywords
WIN55,212-2、腫瘤壞死因子相關的誘導凋亡配體、死亡受體5
TRAIL, WIN55,212-2, Death receptor 5
統計
Statistics
本論文已被瀏覽 5695 次,被下載 29
The thesis/dissertation has been browsed 5695 times, has been downloaded 29 times.
中文摘要
肺癌是佔癌症死亡最重要原因並且目前的化學治療藥物療效易有抗藥性發生。腫瘤壞死因子相關凋亡誘導配體(TRAIL)是具潛力抗癌藥物,因為它可以選擇性地誘發癌細胞凋亡,但不會影響正常細胞。然而WIN 55,212-2,一種人工合成的CB1/CB2大麻酚受體激化物,能在腫瘤細胞株誘導細胞凋亡。然而,在WIN55, 212-2合併TRAIL作用所介導的細胞凋亡的分子機制尚未在肺癌中被證實。在本研究中,我們表明,WIN55, 212-2中以劑量依賴的方式誘導細胞死亡,負調節誘餌受體 (DcR2、DcR3),並大幅正向調節死亡受體 (DR5)的表現。在肺腺癌A549細胞中,WIN55,212-2介導TRAIL死亡受體DR5的上調,似乎透過CHOP基因表現增加來調節DR5基因的表現,此外,WIN55,212-2負調節細胞存活相關的基因 (Bcl-2、Mcl-1與Survivin)表現。此外,本實驗室構建DR5啟動子螢光素酶質體包含第一內含子區域內涵蓋p53、CHOP 和 NF-κB DNA等結合位點。DR5啟動子活性分析顯示,WIN55,212-2促進DR5基因轉錄現象。因此,這些實驗數據證明,WIN55, 212-2藉由透過上調DR5能強化TRAIL引發的細胞凋亡。綜合以上,這些結果表明,WIN55, 212-2 / TRAIL合併使用來防止肺癌細胞生長發展具有密切的相關。
Abstract
Lung cancer is a major cause of cancer-related death and is resistant to current chemotherapy agents. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential target for cancer therapy as it selectively kills cancer cells but is non-toxic to normal cells. However, many cancer cells are resistant to TRAIL-induced apoptosis and its mechanism remains unclear. WIN 55,212-2, a synthetic CB1/CB2 receptor agonist, has proven to induce apoptosis in a variety of cancer cells. The aim of this study was to analyze the improvement of anticancer effect of TRAIL by WIN55,212-2 in lung cancer cells. Our results showed that WIN55,212-2 induced cell death in a dose-dependent manner in A549 cells.WIN55,212-2 could down-regulated the expression of decoy Receptors (DcR2, DcR3) and up-regulated the expression of death Receptor5 (DR5). The WIN55,212-2 induced apoptosis in A549 cells was partially regulated by CHOP-mediated DR5 up-regulation. Moreover, WIN55,212-2 treatment decreased the survival factor including Bcl-2, Mcl-1 and Survivin. Furthermore, a luciferase reporter assay revealed that the promoter activity of DR5 including the p53、CHOP and NF-κB DNA-binding site was induced upon WIN55,212-2 treatment. These data indicated that WIN55,212-2 can potentiate TRAIL-induced apoptosis through up-regulation of DR5. Taken together, these results suggest that the WIN55,212-2/TRAIL combination is closely related to prevent the progression of the lung cancer cells.
目次 Table of Contents
論文審定書 ……………………………………………………i
致謝 ……………………………………………………………… ii
中文摘要 ………………………………………………………… iii
英文摘要 ………………………………………………………… iv
目錄 ……………………………………………………………… v
圖目錄 ……………………………………………………… …x
縮寫檢索表 ……………………………………………………xi
第一章 緒論…………………………………………………… 1
第一節 肺癌…………………………………………………… 1
一 肺癌之簡介………………………………………………… 1
二 肺癌之流行病學…………………………………………… 1
三 肺癌之成因………………………………………………… 2
四 肺癌之分類………………………………………………… 2
五 肺癌之治療………………………………………………… 3
六 肺癌之標靶藥物…………………………………………… 6
第二節 大麻酚之相關介紹…………………………………… 6
一 大麻酚之基本介紹………………………………………… 6
二 大麻酚細胞表面接受器之介紹…………………………… 7
三 大麻酚受體激化物之分類………………………………… 8
四 大麻酚受體激化物與癌症之關係………………………… 8
第三節 細胞凋亡……………………………………………… 9
一 細胞凋亡之介紹…………………………………………… 9
二 細胞凋亡蛋白之介紹……………………………………… 10
三 細胞凋亡路徑之介紹……………………………………… 11
第四節 TRAIL與TRAIL receptor之關係…………………… 12
研究目的與動機…………………………………………… 15
實驗設計…………………………………………………… 16
第二章 實驗材料與方法……………………………………… 17
第一節 實驗材料……………………………………………… 17
一 細胞株……………………………………………………… 17
二 實驗藥品…………………………………………………… 17
三 儀器設備與耗材…………………………………………… 20
第二節 實驗方法……………………………………………… 22
一 細胞培養…………………………………………………… 22
二 藥品處理…………………………………………………… 22
三 MTT細胞存活試驗……………………………………… 22
四 細胞凋亡DNA片段化分析……………………………… 23
五 DAPI染色………………………………………………… 24
六 蛋白質標準品減量線製作………………………………… 24
七 細胞蛋白質萃取…………………………………………… 24
八 細胞蛋白質濃度測定與變性……………………………… 25
九 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳…………………… 25
十 西方墨點法………………………………………………… 25
十一 細胞RNA萃取…………………………………………… 26
十二 反轉錄聚合酶鏈反應……………………………………… 26
十三 轉染分析…………………………………………………… 27
十四 報導基因分析……………………………………………… 27
十五 統計分析…………………………………………………… 28
第三章 實驗結果……………………………………………… 29
第一節 大麻酚受體激化物WIN55,212-2與TRAIL對肺腺癌
A549細胞的生長抑制情況……………………………… 29
第二節 大麻酚受體激化物WIN55,212-2與TRAIL對肺腺癌
A549細胞形態的影響…………………………………… 30
第三節 大麻酚受體激化物WIN55,212-2與TRAIL對肺腺癌
A549細胞凋亡之影響…………………………………… 30
第四節 大麻酚受體激化物WIN55,212-2作用下DR5、CHOP
基因於肺腺癌A549細胞的變化………………………… 30
第五節 大麻酚受體激化物WIN55,212-2對肺腺癌A549細胞
內死亡受體DR5與誘餌受體DcR2、DcR3表現量之影響………………………………………………………………… 31
第六節 大麻酚受體激化物WIN55,212-2對肺腺癌A549細胞內
凋亡基因表現量之影響…………………………………… 32
第七節 大麻酚受體激化物WIN55,212-2與TRAIL作用下DR5、
CHOP表現量之影響……………………………………… 32
第八節 大麻酚受體激化物WIN55,212-2與TRAIL作用下與抗氧
化劑NAC共同處理對肺腺癌A549細胞內CHOP表現量之影響………………………………………………………………… 33
第九節 大麻酚受體激化物WIN55,212-2與TRAIL作用下對肺腺
癌A549細胞內凋亡相關蛋白質之影響………………… 33
第十節 大麻酚受體激化物WIN55,212-2作用下對DR5啟動子
表現之影響………………………………………………… 34
第十一節 大麻酚受體激化物WIN55,212-2作用下對轉錄因子
NF-κB表現之影響……………………………………… 34
第四章 結論與討論…………………………………………… 35
參考文獻 ………………………………………………………… 38
附圖 ……………………………………………………………… 42
附錄 ……………………………………………………………… 52
參考文獻 References
1. Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86.
2. Hui-Yi Shiao, N.-J.C., Hsing-Pang Hsieh, Anaplastic Lymphoma Kinase (ALK) Inhibitors: New Cancer Breakthroughs for Lung Cancer J. Cancer Res. Pract., 2011. 27(4): p. 143-156.
3. McKillop D, P.E., Kemp JV, Spence MP, Kendrew J, Barnett S, Wood PG, Giles PB, Patterson AB, Bichat F, Guilbaud N, Stephens TC, Tumor penetration of gefitinib (Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor. Mol Cancer Ther, 2005. 4(4): p. 641-9.
4. Tung, C.L., et al., Salinomycin acts through reducing AKT-dependent thymidylate synthase expression to enhance erlotinib-induced cytotoxicity in human lung cancer cells. Exp Cell Res, 2017. 357(1): p. 59-66.
5. Renato José Silva-Oliveira, M.M., Olga Martinho, Maicon F. Zanon, Luciano de Souza Viana, André Lopes Carvalho,Rui Manuel Reis, AKT can modulate the in vitro response of HNSCC cells to irreversible EGFR inhibitors. oncotarget, 2017.
6. Jensen, B., et al., Medical Marijuana and Chronic Pain: a Review of Basic Science and Clinical Evidence. Curr Pain Headache Rep, 2015. 19(10): p. 50.
7. Freimuth, N., R. Ramer, and B. Hinz, Antitumorigenic effects of cannabinoids beyond apoptosis. J Pharmacol Exp Ther, 2010. 332(2): p. 336-44.
8. Cascio, M.G., et al., Evidence that the plant cannabinoid cannabigerol is a highly potent alpha2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist. Br J Pharmacol, 2010. 159(1): p. 129-41.
9. German, N., et al., Diarylureas as allosteric modulators of the cannabinoid CB1 receptor: structure-activity relationship studies on 1-(4-chlorophenyl)-3-{3-[6-(pyrrolidin-1-yl)pyridin-2-yl]phenyl}urea (PSNCBAM-1). J Med Chem, 2014. 57(18): p. 7758-69.
10. Ibrahim, B.M. and A.A. Abdel-Rahman, Enhancement of rostral ventrolateral medulla neuronal nitric-oxide synthase-nitric-oxide signaling mediates the central cannabinoid receptor 1-evoked pressor response in conscious rats. J Pharmacol Exp Ther, 2012. 341(3): p. 579-86.
11. Ledent C, et al., Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science, 1999. 15(283): p. 401-404.
12. Kofalvi, A., et al., Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer's disease. Neuropharmacology, 2016.
13. Preet, A., et al., Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis. Cancer Prev Res (Phila), 2011. 4(1): p. 65-75.
14. Rao, G.K. and N.E. Kaminski, Cannabinoid-mediated elevation of intracellular calcium: a structure-activity relationship. J Pharmacol Exp Ther, 2006. 317(2): p. 820-9.
15. An, Q., et al., In vitro effects of mitomycin C on the proliferation of the non-small-cell lung cancer line A549. Int J Clin Exp Med, 2015. 8(11): p. 20516-23.
16. Rodriguez-Arias, M., et al., Effects of Cannabinoid Exposure during Adolescence on the Conditioned Rewarding Effects of WIN 55212-2 and Cocaine in Mice: Influence of the Novelty-Seeking Trait. Neural Plast, 2016. 2016: p. 6481862.
17. Tomas-Roig, J., et al., The Cannabinoid CB1/CB2 Agonist WIN55212.2 Promotes Oligodendrocyte Differentiation In Vitro and Neuroprotection During the Cuprizone-Induced Central Nervous System Demyelination. CNS Neurosci Ther, 2016. 22(5): p. 387-95.
18. Niu, F., et al., Potentiation of the antitumor activity of adriamycin against osteosarcoma by cannabinoid WIN-55,212-2. Oncol Lett, 2015. 10(4): p. 2415-2421.
19. Qamri, Z., et al., Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther, 2009. 8(11): p. 3117-29.
20. Bandana Chakravarti, et al., Cannabinoids as therapeutic agents in cancer: current status and future implications. Oncotarget, 2014. 5(15): p. 5852-5872.
21. Sarfaraz, S., et al., Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. J Biol Chem, 2006. 281(51): p. 39480-91.
22. M.C. de Almagro and D. Vucic, The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Exp Oncol, 2002. 34(3): p. 200-11.
23. Allen RT, Cluck MW, and A. DK., Mechanisms controlling cellular suicide: role of Bcl-2 and caspases. Cell Mol Life Sci, 1998. 54(5): p. 427-45.
24. Hail, N., Jr., et al., Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis, 2006. 11(6): p. 889-904.
25. Prasad, S., et al., ROS and CHOP are critical for dibenzylideneacetone to sensitize tumor cells to TRAIL through induction of death receptors and downregulation of cell survival proteins. Cancer Res, 2011. 71(2): p. 538-49.
26. Wu, W.G., et al., TRAIL-R2 is not correlated with p53 status and is rarely mutated in non-small cell lung cancer. Anticancer Res, 2000. 20(6B): p. 4525-9.
27. Stuckey, D.W. and K. Shah, TRAIL on trial: preclinical advances in cancer therapy. Trends Mol Med, 2013. 19(11): p. 685-94.
28. Lee, D.H., et al., Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells. Toxicol Appl Pharmacol, 2014. 279(3): p. 253-65.
29. Roth W, et al., Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res, 2001. 61(6): p. 2759-65.
30. Koehler, B.C., TRAIL-induced apoptosis of hepatocellular carcinoma cells is augmented by targeted therapies. World Journal of Gastroenterology, 2009. 15(47): p. 5924.
31. Moon, M.H., et al., Bisphosphonate enhances TRAIL sensitivity to human osteosarcoma cells via death receptor 5 upregulation. Exp Mol Med, 2011. 43(3): p. 138-45.
32. Charette, N., et al., Salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis through DR5 and survivin-dependent mechanisms. Cell Death Dis, 2013. 4: p. e471.
33. Ashkenazi, A., Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer, 2002. 2(6): p. 420-30.
34. Wiley, S.R., et al., Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity, 1995. 3(6): p. 673-82.
35. M.C. de Almagro, D.V., THE INHIBITOR OF APOPTOSIS (IAP) PROTEINS ARE CRITICAL REGULATORS OF SIGNALING PATHWAYS AND TARGETS FOR ANTI-CANCER THERAPY. Experimental oncology, 2012. 34(3): p. 200-211.
36. Pellerito, O., et al., The synthetic cannabinoid WIN 55,212-2 sensitizes hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating p8/CCAAT/enhancer binding protein homologous protein (CHOP)/death receptor 5 (DR5) axis. Mol Pharmacol, 2010. 77(5): p. 854-63.
37. Trivedi, R., R. Maurya, and D.P. Mishra, Medicarpin, a legume phytoalexin sensitizes myeloid leukemia cells to TRAIL-induced apoptosis through the induction of DR5 and activation of the ROS-JNK-CHOP pathway. Cell Death Dis, 2014. 5: p. e1465.
38. Kim, J.H., et al., Zyflamend sensitizes tumor cells to TRAIL-induced apoptosis through up-regulation of death receptors and down-regulation of survival proteins: role of ROS-dependent CCAAT/enhancer-binding protein-homologous protein pathway. Antioxid Redox Signal, 2012. 16(5): p. 413-27.
39. Carracedo, A., et al., The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell, 2006. 9(4): p. 301-12.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code