Responsive image
博碩士論文 etd-0728117-141917 詳細資訊
Title page for etd-0728117-141917
論文名稱
Title
應用於3 GHz頻段之薄膜體聲波共振器之研究
Study of thin film bulk acoustic resonator for 3 GHz band application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-20
繳交日期
Date of Submission
2017-08-28
關鍵字
Keywords
快速熱退火、頻率響應、壓電、體聲波共振器、氧化鋅
Piezoelectric, Frequency Response, Rapid Thermal Annealing (RTA), Film Bulk Acoustic Resonator (FBAR), ZnO
統計
Statistics
本論文已被瀏覽 5712 次,被下載 32
The thesis/dissertation has been browsed 5712 times, has been downloaded 32 times.
中文摘要
本研究利用氧化鋅(ZnO)薄膜研製薄膜體聲波(FBAR)元件;首先沉積白金電極(Pt)於雙面沉積氮化矽(SiNx)之基板上,對Pt電極做SEM及AFM分析,以得到高品質之電極薄膜。再於室溫環境下將ZnO沉積於Pt之上,藉由調變濺鍍參數獲得高c軸優選取向之ZnO薄膜。ZnO薄膜表面形貌及結晶特性經由SEM及XRD分析,可得到表面緻密、晶粒大小均一、高結晶特性且具有明顯柱狀結構之ZnO薄膜。之後再以KOH濕式蝕刻製作出背部空腔,並以RIE去除殘留之Si。
此外,本研究經由調變ZnO壓電薄膜厚度以達到3 GHz以上之共振頻率,並透過快速熱退火(RTA)製程改善ZnO之結晶特性,提升元件之頻率響應。由實驗結果可得,隨著ZnO薄膜變薄,元件之共振頻率會提升,藉由RTA退火,元件頻率響應之回波損耗(return loss)可由-24 dB改善至-34.6 dB,共振頻率為3.389 GHz,並得到機電耦合係數為3.02%。
Abstract
In this study, film bulk acoustic resonator (FBAR) devices were fabricated by zinc oxide (ZnO) thin film. Platinum (Pt) electrode was deposited on the substrate which was deposited by silicon nitride (SiNx) on both sides. Pt electrode was analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) to obtain high quality electrode film. ZnO thin film was deposited on Pt electrode. The highly c-axis oriented ZnO thin film could be obtained by controlling the sputtering parameters. The surface morphologies and crystalline characteristics of ZnO thin film was measured by SEM and XRD analysis. The ZnO thin film with a rigidly precise surface, uniform grain size, highly crystalline characteristics and columnar structure could be obtained. The wet etching was used to fabricate the cavity of device with KOH and the residual Si was removwd by reactive-ion etching (RIE).
In addition, the thickness of ZnO piezoelectric layer was adjusted to reach the resonant frequency above 3 GHz. Through the rapid thermal annealing (RTA) process to improve the crystallization characteristics of ZnO, the characteristics of devices could be enhanced. Experimental results revealed that the resonant frequency increased as thickness of ZnO decreased. With the treatment of RTA, the return loss of frequency response of FBAR device was improved from -24 dB to -34.6 dB, and the resonant frequency of 3.389 GHz and electromechanical coupling coefficient of 3.02% were obtained.
目次 Table of Contents
中文審定書 i
英文審定書 ii
誌謝 iii
摘要 iv
Abstract vi
目錄 viii
第一章 前言 1
1.1 研究背景 1
1.2 薄膜體聲波元件 2
1.3 研究內容 6
第二章 理論分析 8
2.1 壓電理論 8
2.1.1 壓電模數(Piezoelectric moduli) 9
2.1.2 壓電效應 13
2.1.3 壓電材料 14
2.2 氧化鋅結構與特性 16
2.3 濺鍍原理 19
2.3.1 輝光放電 19
2.3.2 磁控濺鍍 20
2.3.3 射頻濺鍍 22
2.3.4 反應性濺鍍 22
2.4 薄膜沉積原理 24
2.4.1 薄膜沉積步驟 24
2.4.2 薄膜剖面以及表面結構 25
2.5 矽蝕刻 28
2.6 反應式離子蝕刻 29
2.7 感應耦合型電漿蝕刻 30
2.8 快速熱退火 31
2.9 Mason等效電路模型 32
2.10 薄膜體聲波共振器 36
2.10.1 機電耦合係數(kt2)之量測 37
第三章 實驗步驟 39
3.1 薄膜製程 39
3.1.1 電極薄膜製作 39
3.1.2 氧化鋅壓電薄膜製作 41
3.2 薄膜特性分析 43
3.2.1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)分析 43
3.2.2 X光繞射(X-ray Diffraction, XRD)分析 43
3.2.3 原子力顯微鏡(Atomic Force Microscopy, AFM)分析 45
3.2.4 四點探針(Four-Point Probe)分析 45
3.3 黃光微影製程 46
3.4 FBAR製作流程 48
3.4.1 RCA基板清洗 48
3.4.2 沉積SiNx薄膜 50
3.4.3 背部蝕刻窗口製作 50
3.4.4 底電極製作 50
3.4.5 壓電層製作 50
3.4.6 頂電極製作 51
3.4.7 以濕式蝕刻製作背部空腔 51
3.4.8 以RIE清除殘留Si 51
3.5 FBAR元件頻率響應量測 51
第四章 結果與討論 53
4.1 Pt電極薄膜特性分析 53
4.2 ZnO壓電薄膜分析 56
4.2.1調變濺鍍功率 56
4.2.2 調變濺鍍壓力 60
4.3 以RTA退火處理ZnO薄膜 64
4.3.1 調變RTA退火溫度 64
4.3.2 調變RTA退火時間 68
4.4 蝕刻製程 71
4.4.1 ZnO蝕刻製程 71
4.4.2 背部空腔蝕刻製程 72
4.4.3 Si蝕刻製程 73
4.5 頻率響應量測 75
第五章 結論 83
參考文獻 84
參考文獻 References
[1] C. K. O’Sullivan, G. G. Guilbault, “Commercial quartz crystal microbalances – theory and applications,” Biosensors & Bioelectronics, vol. 14, pp. 663-670, 1999.
[2] M. S. Weinberg, B. T. Cunningham, C. W. Clapp “Modeling Flexural Plate Wave Devices,” Journal of Microelectromechanical Systems, vol. 9, pp. 370-379, 2000.
[3] R. C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, J. D. Larson III, “Thin film bulk wave acoustic resonators (FBAR) for wireless applications,” IEEE Ultrasonics Symposium. Proceedings, 2001.
[4] P. B. Kirby, M. D. G. Potter, C. P. Williams, M. Y. Lim, “Thin film piezoelectric property considerations for surface acoustic wave and thin film bulk acoustic resonators,” Journal of the European Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[5] S. H. Kim, J. H. Kim, J. K. Lee, S. H. Lee, K. H. Yoon, “Bragg reflector thin film resonator using aluminium nitride deposited by rf sputtering,” Asia-Pacific Microwave Conference, Proceedings, 2000.
[6] K. M. Lakin, G. R. Kline, K. T. McCarron, “Development of miniature filters for wireless applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, pp. 2933-2939, 1995.
[7] W. Newell, “Face-mounted piezoelectric resonators,” Proceedings of the IEEE, vol. 53, pp. 575-581, 1965.
[8] R. Lanz, P. Carazzetti, P. Muralt, “Surface micromachined BAW resonators based on AlN,” IEEE Ultrasonics Symposium, Proceedings, 2002.
[9] M. Hara, M. Esashi, “RF MEMS and MEMS Packaging,” 2nd International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, pp. 1-8, 2004.
[10] H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee, S. W. Kim, “A noble suspended type thin film resonator (STFR) using the SOI technology,” Sensors and Actuators A: Physical, vol. 89, pp. 255-258 2001.
[11] C. L. Huang, K. W. Tay, L. Wu, “Fabrication and performance analysis of film bulk acoustic wave resonators,” Materials Letters, vol. 59, pp. 1012-1016, 2005.
[12] K. M. Lakin, J. R. Belsick, J. P. McDonald, K. T. McCarron, C. W. Andrus, “Bulk acoustic wave resonators and filters for applications above 2 GHz,” IEEE MTT-S International Microwave Symposium Digest, 2002.
[13] R. Jakkaraju, G. Henn, C. Shearer, M. Harris, N. Rimmer, P. Rich, “Integrated approach to electrode and AlN depositions for bulk acoustic wave (BAW) devices,” Microelectronic engineering, vol. 70, pp. 566-570, 2003.
[14] P. Kirby, M. Potter, C. Williams, M. Lim, “Thin film piezoelectric property considerations for surface acoustic wave and thin film bulk acoustic resonators,” Journal of the European Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[15] S. H. Lee, J. K. Lee, K. H. Yoon, “Growth of highly c-axis textured AlN films on Mo electrodes for film bulk acoustic wave resonators,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, pp. 1-5, 2003.
[16] K. W. Tay, C. L. Huang, L. Wu, “Influence of piezoelectric film and electrode materials on film bulk acoustic-wave resonator characteristics,” Japanese journal of applied physics, vol. 43, pp. 1122-1126, 2004.
[17] T. Nishihara, T. Yokoyama, T. Miyashita, Y. Satoh, “High performance and miniature thin film bulk acoustic wave filters for 5 GHz,” IEEE Ultrasonics Symposium. Proceedings, 2002.
[18] 林瑞欽,“氧化鋅薄膜應用於薄膜體聲波共振器之研究”,國立中山大學電機工程學系博士班學位論文,2008。
[19] J. Curie, P. curie, “Development by Pressure of Polar Electricity in Hemihedral Crystals with Inclined faces,” Bulletin de la Société minéralogique de France, vol. 3, pp. 90-93, 1880.
[20] W. G. Hankel, Abh. Sachs, “Piezoelectric,” Applied Sciences, vol. 12, pp. 547, 1881.
[21] J. Curie, P. curie, “Contractions and expansions produced by voltages in hemihedral crystals with inclined faces,” Comptes rendus, vol. 93, pp. 1137-1140, 1881.
[22] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊,pp. 7, 1994.
[23] 劉吉卿,“以兩階段濺鍍法沉積氧化鋅壓電薄膜於薄膜體聲波共振器之應用”,國立中山大學電機工程研究所碩士論文,2006。
[24] Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, “Whatmore, R. Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanatethinfilms,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, pp. 769-778, 2001.
[25] 姜嘉銘,“以雙模態氧化鋅薄膜體聲波共振器作為液態感測器之研究”,國立中山大學電機工程研究所碩士論文,2011。
[26] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, H. Morkoç, “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, vol. 98, pp. 041301-1 - 041301-103, 2005.
[27] P. Nunes, D. Costa, E. Fortunato, R. Martins, “Performances presented by zinc oxide thin films deposited by rf magnetron sputtering,” Vacuum, vol. 64, pp. 293-297, 2002.
[28] Y. Igasaki, H. Saito, “The effects of zinc diffusion on the electrical and optical properties of ZnO: Al films prepared by rf reactive sputtering,” Thin Solid Films, vol. 199, pp. 223-230, 1991.
[29] T. Y. Ma, D. K. Shim, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films,” Thin Solid Films, vol. 410, pp. 8-13, 2002.
[30] 水瑞鐏,“氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用”,國立成功大學電機工程學系博士論文,2002。
[31] 施敏著,張俊彥譯,半導體元件之物理與技術,儒林,pp. 425, 1990。
[32] R. W. Berry, P. M. Hall, M. T. Harris, “Thin film technology,” Van Nostrand Reinhold, pp. 201, 1980.
[33] J. L. Vossen, W. Kern, “Thin Film Process,” Academic Press, pp. 134, 1991.
[34] E. Janczak-Bienk, H. Jensen, G. Sorensen, “The influence of the reactive gas flow on the properties of AIN sputter-deposited films,” Materials Science and Engineering: A, vol. 140, pp. 696-701, 1991.
[35] 莊達人,“VLSI 製造技術”,高立圖書股份有限公司,1995 年。
[36] 張家豪,“氧化鋅薄膜之微結構與奈米機械特性研究”,國立交通大學機械工程學系碩士論文,2008。
[37] J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” Journal of Vacuum Science and Technology, vol. 11, pp. 666-670, 1974.
[38] K. A. Shaw, Z. L. Zhang, N. C. MacDonald, “SCREAM 1: a single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors and Actuators A Physical, vol. 40, pp. 63-70, 1994.
[39] P. Chabert, N. Braithwaite, “Physics of Radio-Frequency Plasmas,” Cambridge University Press, pp. 219-259, 2011.
[40] Y. C. Lee, S. Y. Hu, W. Water, K. K. Tiong, Z. C. Feng, Y. T. Chen, J. C. Huang. J. W. Lee, C. C. Huang, J. L. Shen, M. H. Cheng, “Rapid thermal annealing effects on the structural and optical properties of ZnO films deposited on Si substrates,” Journal of Luminescence, vol. 129, pp. 148-152, 2009.
[41] 鍾思行,“以快速熱退火法加強金屬側向誘發結晶速率之研究”,國立交通大學材料科學與工程研究所碩士論文,2007。
[42] M. Hara, J. Kuypers, T. Abe, M. Esashi, “Surface micromachined AlN thin film 2 GHz resonator for CMOS integration,” Sensors and Actuators A: Physical, vol. 117, pp. 211-216, 2005.
[43] M. Grujicic, S. Lai, “Multi-length scale modeling of chemical vapor deposition of titanium nitride coatings,” Journal of Materials Science, vol. 36, pp. 2937-2953, 2001.
[44] G. H. Gilmer, H. Huang, T. D. de la Rubia, J. D. Torre, F. Baumann, “Lattice Monte Carlo models of thin film deposition,” Thin Solid Films, vol. 365, pp. 189-200, 2000.
[45] J. F. Rosenbaum, “Bulk acoustic wave theory and devices,” Artech House Boston, 1988.
[46] M. Marlo, V. Milman, “Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,” Physical Review B, vol. 62, pp. 2899-2907, 2000.
[47] X. Y. Liu, P. Bennema, “Theoretical consideration of the growth morphology of crystals,” Physical Review B, vol. 53, pp. 2314-2325, 1996.
[48] L. Dong, D. Srolovitz, “Mechanism of texture development in ion-beam-assisted deposition,” Applied Physics Letters, vol. 75, pp. 584-586, 1999.
[49] D. Royer, E. Dieulesaint, “Elastic Waves in Solids II: Generation, Acousto-optic Interaction,” Springer-Verlag, 2000.
[50] Y. Kajikawa, S. Noda, H. Komiyama, “Preferred orientation of chemical vapor deposited polycrystalline silicon carbide films,” Chemical Vapor Deposition, vol. 8, pp. 99-104, 2002.
[51] 郭益男,“反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究”,國立中山大學電機工程研究所碩士論文,2004。
[52] R. C. Lin, Y. C. Chen, K. S. Kao, “Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators,” Applied Physics A, vol. 89, pp. 475-479, 2007.
[53] S. H. Park, B. C. Seo, H. D. Park, G. Yoon, “Film Bulk Acoustic Resonator Fabrication for Radio Frequency Filter Applications,” Japanese Journal of Applied Physics, vol. 39, pp. 4115-4119, 2000.
[54] 施敏著,黃調元譯,“半導體元件物理與製作技術”,國立交通大學出版社,2002。
[55] T. Kamohara, M. Akiyama, N. Ueno, K. Nonaka, H. Tateyama, “Growth of Highly C-Axis-Oriented Aluminum Nitride Thin Films on Molybdenum Electrodes Using Aluminum Nitride Interlayers,” Journal of Crystal Growth, vol. 275, pp. 383-388, 2005.
[56] S. Y. Hu, Y. C. Lee, J. W. Lee, J. C. Huang, J. L. Shen, W. Water, “The structural and optical properties of ZnO/Si thin films by RTA treatments,” Applied Surface Science, vol. 254, pp. 1578-1582, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code