Responsive image
博碩士論文 etd-0728117-171555 詳細資訊
Title page for etd-0728117-171555
論文名稱
Title
以現地化學氧化法整治環丁碸污染地下水
Applying In-situ Oxidation to Remediate Sulfolane -Contaminated Groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-20
繳交日期
Date of Submission
2017-08-31
關鍵字
Keywords
環丁碸、過硫酸鹽、過氧化氫、芬頓試劑、化學氧化
sulfolane, chemical oxidation, Fenton reagent, hydrogen peroxide, persulfate
統計
Statistics
本論文已被瀏覽 5682 次,被下載 0
The thesis/dissertation has been browsed 5682 times, has been downloaded 0 times.
中文摘要
環丁碸(Sulfolane, C4H8O2S)又名四氫噻吩-1,1-二氧化物(Tetrahydrothiophene 1,1-dioxide, Tetramethylene sulfone),為無色透明液體,作為萃取溶劑被應用在石化工業中,例如天然氣加工、石油煉製以及芳烴的萃取。環丁碸具有易溶於水、不易從土壤或水中揮發等特性,但可利用現地化學氧化法(In situ chemical oxidation, ISCO)灌注H2O2氧化環丁碸達到去除及移動污染物的目的。本研究以中部某受環丁碸污染之芳香烴廠作為ISCO試驗場址,並將實驗分為實驗室實驗與現地整治。實驗室部分進行Fenton-like、Fenton以及Persulfate法3種前導氧化批次試驗,調整氧化劑的濃度與劑量得到氧化環丁碸的最佳比例。現地整治便使用現場架設之注藥系統應用批次試驗數據於受污染之現地場址進行氧化劑的配製與灌注。由前導氧化批次試驗結果得知,過氧化氫對環丁碸氧化去除效率優於過硫酸鈉,氧化劑濃度愈高則環丁碸去除效果愈佳。現地模場試驗結果顯示過氧化氫與Fenton試劑應用於現場對目標污染物具氧化效果。過硫酸鹽的灌注除了能有效且迅速的氧化並破壞污染物外,也能在一定時間內持續對現地額外流入的污染物進行氧化。本研究第二部分以環丁碸為目標污染物利用過碳酸鈉與過硫酸鈉兩種氧化劑進行氧化批次實驗,從甲、乙兩組批次實驗結果可發現過碳酸鈉在反應過程中對環境中的pH與ORP影響甚大,過碳酸鈉中的碳酸鈉具有提升水中pH的能力,其ORP值因釋氧作用持續維持在50 mV以下,對環丁碸的去除率可達70%,該方法對環丁碸污染物雖然具有去除效果,但其相關氧化機制與應用方式須深入探討。
Abstract
Sulfolane (also tetramethylene sulfone, systematic name: 2,3,4,5-tetrahydrothiophene-1,1-dioxide) is an organosulfur compound, formally a cyclic sulfone, with the formula of C4H8O2S. It is a colorless liquid commonly used in the chemical industry as an industrial solvent for extractive distillation and extraction of aromatic hydrocarbons from hydrocarbon mixtures and to purify natural gas. Sulfolane is a polar aprotic solvent, and it is readily soluble in water that can be oxidized by H2O2 to achieve the purpose of removing and moving contaminants by In situ chemical oxidation (ISCO). The objectives of study were to evaluate the feasibility of using ISCO to remediate sulfolane-contaminated site. The study consisted of laboratory bench-scale and field pilot-scale experiments. In the laboratory study, Fenton-like, Fenton, and persulfate oxidation experiments were conducted to obtain the optimal operational conditions. The pilot-scale study was conducted in the field using the results from the bench-scale study. More effective oxidation results were obtained when H2O2 was used as the oxidant. Higher H2O2 concentrations could result in higher contaminant removal efficiency. Results from the pilot-scale study show that H2O2 and Fenton reagent could oxidize target compounds effectively. Injection of persulfate could also oxidize sulfolane effectively. In this study, sodium percarbonate and sodium persulfate were used as the oxidants to evaluate their effectiveness on sulfolane oxidation. Results show that sodium percarbonate had significant influence on pH and ORP values in solution. Release of carbonate could increase the pH value in solution. The ORP value was maintained around 50 mv due to the release of oxygen. Up to 70% of sulfolane could be removed after the oxidation process.
目次 Table of Contents
誌謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 土壤與地下水之油品污染概況 4
2.2 總石油碳氫化合物 7
2.3 BTEX 9
2.4 環丁碸 11
2.4.1 環丁碸之物理化學特性 13
2.4.2 環丁碸之毒性與危害 14
2.5 現地化學氧化技術 16
2.5.1 過氧化氫(Hydrogen peroxide, H2O2)/Fenton法 21
2.5.2 過錳酸鹽(Permanganate, MnO4-) 25
2.5.3 臭氧(Ozone) 27
2.5.4 過硫酸鹽(Persulfate, S2O82-) 28
2.5.5 過碳酸鈉(sodium percarbonate, SPC) 34
第三章 實驗設備與方法 36
3.1 研究流程 36
3.2 實驗設計 38
3.2.1 前導批次試驗 38
3.2.2 模場試驗 39
3.2.3 過碳酸鈉應用批次試驗 41
3.3 實驗材料與設備 44
3.3.1 實驗材料 44
3.3.2 實驗設備 45
3.4 實驗分析方法 46
3.4.1 環丁碸分析 46
3.4.2 氧化劑殘留濃度監測 47
第四章 結果與討論 48
4.1 前導試驗 48
4.1.1 前導氧化批次試驗 48
4.1.2 氧化反應速率 54
4.1.3 氧化副產物 57
4.2 場址現況 59
4.2.1 場址調查 59
4.2.2 現場水質參數 62
4.2.3 土壤SOD試驗 63
4.3 模場試驗A區 64
4.3.1 操作參數 64
4.3.2 類芬頓法 65
4.4 模場試驗B區 73
4.4.1 操作參數 73
4.4.2 芬頓法 73
4.4.3 過硫酸鹽法 83
4.5 過碳酸鈉應用成效 91
4.5.1 甲組試驗成效 92
4.5.2 乙組試驗成效 96
第五章 結論與建議 100
參考文獻 105
附錄-現場工作日誌 113
參考文獻 References
Agency for Toxic Substances and Disease Registry (ATSDR) (2005). Toxicological Profile for Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene. U.S. Department of Health & Human Services Public Health Service.
Akbari, S., Ghanbari, F., and Moradi, M. (2016). Bisphenol A degradation in aqueous solutions by electrogenerated ferrous ion activated ozone, hydrogen peroxide and persulfate:applying low current density for oxidation mechanism. Chemical Engineering Journal, 294, 298-307.
Akmirza, I., Pascual C., Carvajal, A., Pérez, R., Muñoz, R., and Lebrero, R. (2017). Anoxic biodegradation of BTEX in a biotrickling filter. Science of The Total Environment, 587, 457-465.
Al, T.A., Banks, V., Loomer, D., Parker, B.L., and Mayer, K.U., (2006). Metal mobility during in situ chemical oxidation of TCE by KMnO4. Journal of Contaminant Hydrology, 88, 137-152.
Arshadi, M., Rajaram, H., Detwiler, R. L., and Jones, T. (2015). High‐resolution experiments on chemical oxidation of DNAPL in variable‐aperture fractures. Water Resources Research, 51(4), 2317-2335.
Asghar, A., Raman, A. A. A., and Daud, W. M. A. W. (2015). Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment:a review. Journal of cleaner production, 87, 826-838.
Brar, S. K., Verma, M. R., Surampalli, Y., Misra, K., Tyagi, R. D. N., Meunier, J. F. (2006). Blais, Bioremediation of hazardous wastes - a review. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management. 10, 59-72.
Brown , R. A., Robinson, D., Skladany, G. and Loeper, J. (2004). Response to Naturally Occurring Organic Material : Permanganate versus Persulfate. Proceedings of ConSoil, 2003-8 th International FZK/TNO Conference on Contaminated Soil, 1686-1691, May 12-16, Gent, Belgium.
Biache, C., Lorgeoux, C., Andriatsihoarana, S., Colombano, S., and Faure, P. (2015). Effect of pre-heating on the chemical oxidation efficiency:implications for the PAH availability measurement in contaminated soils.” Journal of hazardous materials, 286, 55-63.
Block, P. A., Brown, R. A., and Robinson, D. (2004). Novel activation technologies for sodium persulfate in situ chemical oxidation. In Proceedings of the Fourth International Conference on the remediation of chlorinated and recalcitrant compounds (pp. 24-27). Columbus, OH: Battelle Press.
Bocos, E., Pazos, M., and Sanromán, M. Á., (2016). Electro-Fenton treatment of imidazolium-based ionic liquids: kinetics and degradation pathways. RSC Advances, 6(3), 1958-1965.
Chuichulcherm, S., Kasichan, N., Srinophakun, P., Saisriyoot, M., and Thanapimmetha, A. (2017). The use of ozone in a continuous cyclical swing mode regeneration of Fe-EDTA for a clean biogas process from a swine farm waste. Journal of Cleaner Production, 142, 1267-1273.
Dijkshoorn P., (2003). In-situ chemical oxidation of chlorinated solvents with potassium permanganate on a site in Belgium. Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil, 1686-1691, May 12-16, Gent, Belgium.
Dulova, N., Kattel, E., and Trapido, M. (2017). Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes:The effect of citric acid addition. Chemical Engineering Journal, 318, 254-263.
Environment Agency. (2005). The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils. Science Report, P5-080/TR3.
Fischbacher, A., von, Sonntag, C., and Schmidt, T. C. (2017). Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe (II) ratios. Chemosphere, 182, 738-744.
FMC, (2010). The Safe Use of Klozur® Persulfate Activators. FMC Corporation. Available from:
<http://www.peroxychem.com/media/22889/FMC_Peroxygen_Talk_2010-8_Safe_Use_of_Klozur_Persulfate_Activators.pdf>
Furman, O. S., Teel A. L., and Watts, R. J. (2010). “Mechanism of base activation of persulfate.” Environmental science and technology, 44(16), 6423-6428.
Gates, D. D. and Siegrist, R. L. (1995). In Situ Chemical Oxidation of Trichloroethylene Using Hydrogen Peroxide, J. Environ. Eng., 121, .639-644.
Greene, E. A., Gieg, L. M., Coy, D. L., and Fedorak, P. M. (1998). “Sulfolane biodegradation potential in aquifer sediments at sour natural gas plant sites.” Water Research, 32(12), 3680-3688.
Huang, K.C., Couttenye, R.A., and Hoag, G.E. (2002). “Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE).” Chemosphere 49, 413-420.
Huang, D., Hu C., Zeng, G., Cheng, M., Xu P., Gong, X., and Xue, W. (2017). “Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation.” Science of The Total Environment, 574, 1599-1610.
Huling, S. G., Jones, P. K., Ela, W. P., and Arnold, R. G. (2005). Fenton-driven chemical regeneration of MTBE-spent GAC. Water research, 39(10), 2145-2153.
Huling, S. G., and Pivetz, B. E. (2006). In-situ chemical oxidation (No. EPA/600/R-06/072). ENVIRONMENTAL PROTECTION AGENCY WASHINGTON DC OFFICE OF WATER.
Hussain, I., Li M., Zhang, Y., Li Y., Huang, S., Du, X., and Anwar, N. (2017). “Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol.” Chemical Engineering Journal, 311, 163-172.
Iglesias, O., de Dios, M. F., Tavares, T., Sanromán, M. A. and Pazos, M., (2015). Heterogeneous electro-Fenton treatment: preparation, characterization and performance in groundwater pesticide removal. Journal of Industrial and Engineering Chemistry, 27, 276-282.
Interstate Technology and Regulatory Council (ITRC), (2005). Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater, 2nd ed. Interstate Technology and Regulatory Council, In Situ Chemical Oxidation Team, Washington, DC.
John, M., Heuss-Aßbichler, S., Ullrich, A., and Rettenwander, D. (2016). Purification of heavy metal loaded wastewater from electroplating industry under synthesis of delafossite (ABO 2) by Lt-delafossite process. Water research, 100, 98-104.
Jones, C. W. (1999). Applications of hydrogen peroxide and derivatives (Vol. 2). Royal Society of Chemistry.
Kelly, K. L., Marley, M. C., and Sperry, K. L. (2002). In-situ chemical oxidation of MTBE. Contaminated Soil Sediment and Water, 36-40.
Liang, C. J., Bruell, C. J., Marley, M. C., and Sperry, K. L. (2003). Thermally activated persulfate oxidation of Trichloroethylene (TCE) and 1,1,1-Trichlorothane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination, 12(2), 207-228.
Liang, C., and Wang, C. W. (2013). Assessing acute toxicity potential of persulfate ISCO treated water. Chemosphere, 93(11), 2711-2716.
Liu, S., Zhao, X., Zeng, H., Wang, Y., Qiao, M., and Guan, W. (2017). Enhancement of photoelectrocatalytic degradation of diclofenac with persulfate activated by Cu cathode. Chemical Engineering Journal, 320, 168-177.
Masschelein, W., Denis, M. and Ledent, R. (1997). Spectrophotometric Determination of Residual Hydrogen Peroxide. Water Sewage Works, August Issue, pp.69-72.
Matzek, L. W., and Carter, K. E. (2016). Activated persulfate for organic chemical degradation:a review. Chemosphere, 151, 178-188.
Minetti, R. C. P., Macaño, H. R., Britch, J., and Allende, M. C. 2017. In situ chemical oxidation of BTEX and MTBE by ferrate:pH dependence and stability. Journal of Hazardous Materials, 324, 448-456.
Palamuru S. (2015). Microbial catabolic pathways for complex aromatics.
Pan, X., Yan, L., Li, C., Qu, R., Wang, Z. (2017). Degradation of UV-filter Benzophenone-3 in Aqueous Solution Using Persulfate catalyzed by Cobalt Ferrite. Chemical Engineering Journal.
Pardo, F., Santos, A., and Romero, A. (2016). Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate:A column study. Science of The Total Environment, 566, 480-488.
Peng, C., Lee, J. W., Sichani, H. T., Ng, J. C. (2015). Toxic effects of individual and combined effects of BTEX on Euglena gracilis. Journal of hazardous materials, 284, 10-18.
PeroxyChem, (2016).Persulfate Technical Information,.
Available from:
<http://www.peroxychem.com/media/241528/pxc089_persulfates_brochure_pdf_fnl.pdf>
Ranc, B., Faure, P., Croze, V., and Simonnot, M. O. (2016). Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review. Journal of hazardous materials, 312, 280-297.
Rodriguez, S., Santos, A., and Romero, A. (2017). Oxidation of priority and emerging pollutants with persulfate activated by iron: Effect of iron valence and particle size. Chemical Engineering Journal, 318, 197-205.
Song, W., Ravindran, V., and Pirbazari, M. (2008). Process optimization using a kinetic model for the ultraviolet radiation-hydrogen peroxide decomposition of natural and synthetic organic compounds in groundwater. Chemical engineering science, 63(12), 3249-3270.
Song, B., Zeng, G., Gong, J., Liang, J., Xu, P., Liu, Z., and Ye, S. (2017). Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environment International, 105, 43-55.
Stewart, O., and Minnear, L. (2010). Sulfolane Technical Assistance and Evaluation Report. Alaska Department of Environmental Conservation.
Teel, A. L., Elloy, F. C., and Watts, R. J. (2016). Persulfate activation during exertion of total oxidant demand. Chemosphere, 158, 184-192.
Thomas, J. R. (1955). The Thermal Decomposition of Alkyl Hydroperoxides1. Journal of the American Chemical Society, 77(1), 246-248.
Towel, M. G., Bellarby, J., Paton, G. I., Coulon, F., Pollard, S. J. T., and Semple, K. T. (2011). Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities. Environmental Pollution, 159, 515-523.
Waldemer, R. H., Tratnyek, P. G., Johnson, R. L., and Nurmi, J. T. (2007). Oxidation of chlorinated ethenes by heat-activated persulfate:kinetics and products. Environmental Science and Technology, 41(3), 1010-1015.
Warrag, S. E., Peters, C. J., and Kroon, M. C. (2017). Deep Eutectic Solvents for Highly Efficient Separations in Oil and Gas Industries. Current Opinion in Green and Sustainable Chemistry.
Wu, Y., Prulho, R., Brigante, M., Dong, W., Hanna, K., and Mailhot, G. (2017). Activation of persulfate by Fe (III) species:Implications for 4-tert-butylphenol degradation. Journal of Hazardous Materials, 322, 380-386.
Yan, L., Liu, J., Feng, Z., and Zhao, P. (2016), Continuous degradation of BTEX in landfill gas by the UV-Fenton reaction, RSC Advances, 6(2), 1452-1459.
Yu, L., Mehrabani-Zeinabad, M., Achari, G., and Langford, C. H. (2016). Application of UV based advanced oxidation to treat sulfolane in an aqueous medium. Chemosphere, 160, 155-161.
Yu, R. F., Chen, H. W., Cheng, W. P., Lin, Y. J., and Huang, C. L. (2014). Monitoring of ORP, pH and DO in heterogeneous Fenton oxidation using nZVI as a catalyst for the treatment of azo-dye textile wastewater. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 947-954.
朱相羽,(2008).,結合電化學與高級氧化程序處理偶氮性染料Reactive Black 5 之研究,臺灣大學環境工程學研究所學位論文,1-127。
行政院環境保護署土壤及地水整治網列管場址查詢
Available from:< https://sgw.epa.gov.tw/ContaminatedSitesMap/Default.aspx>
李中光、劉新校、邱惠敏,(2015),臭氧在水處理中之應用,桃園市大學校院產業環保技術服務團環保簡訊第27期。
林毓泠,(2007),現址化學氧化法氧化劑過錳酸鹽、過氧化氫及過硫酸鹽對土壤氧化劑需求量影響差異性之探討,中興大學環境工程學系所學位論文,1-148。
徐 甄(2015),發展持久性pH緩衝膠體基質處理受三氯乙烯污染之地下水,國立中山大學環境工程研究所。
梁書豪,(2006),以Fenton-like氧化處理受燃料油污染之土壤,中山大學環境工程研究所學位論文,1-97。
郭育嘉、陳敬遠、楊博名、陳博明、洪萬墩、高志明,(2015),以過硫酸鹽氧化法處理受含氯有機物污染之地下水,土壤及地下水污染整治,2(3),203-210。
陳谷汎、高志明,(2002),土壤及地下水物理/化學復育技術,台灣土壤及地下水環境保護協會簡訊,5,3-5。
陳宏達、陳琪璜、周宜成、涂茂園,(2016),過碳酸鈉於石油碳氫化合物污染土壤之整治應用,化學,74(4) ,303-309。
張育禎 and 陳谷汎,(2015),過硫酸鹽氧化法技術發展及污染整治應用,土壤及地下水污染整治,2(3), 231-241。
湯振廷,(2014) ,不同現地化學氧化法對土壤微生物及柴油降解效率影響之研究, 暨南大學土木工程學系學位論文,1-140。
廖志祥,(1999) ,氯離子和碳酸根同時存在時之H2O2/UV氧化程序模式探討,計畫編號: NSC88-2211-E-041-005。
蕭文哲,(2007),Kinetic study of manganese dioxide formation in the permanganate oxidation of TCE in water,成功大學環境工程學系學位論文,1-150。
謝天佑,(2006),以Fenton法整治受BTEX污染之地下水研究-採用離場式、現地式、現場式之探討,高雄第一科技大學環境與衛生工程學系學位論文,1-111。
環丁碸物質安全資料表,Alfa Aesar,
Available from:
< https://www.alfa.com/zh-cn/content/msds/Taiwanese/l05029.pdf>。
環丁碸物質安全資料表,Merck Millipore,
Available from:
<http://www.merckmillipore.com/TW/zh/product/Sulfolane,MDA_CHEM-807993>
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.180.32
論文開放下載的時間是 校外不公開

Your IP address is 3.137.180.32
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code