Responsive image
博碩士論文 etd-0728117-213822 詳細資訊
Title page for etd-0728117-213822
論文名稱
Title
磁性液體應用於胰臟癌生物分子CA19-9和MUC1之快速檢測
Magnetic Liquid for Rapid Detection of CA19-9 and MUC1 in Pancreatic Cancer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-17
繳交日期
Date of Submission
2017-08-28
關鍵字
Keywords
胰臟癌、光學生物感測器、甲基橙、磁性奈米粒子、奈米金桿
Pancreatic cancer, Magnetic nanoparticles, Methyl orange, Optical biosensor, Gold nanorods
統計
Statistics
本論文已被瀏覽 5710 次,被下載 50
The thesis/dissertation has been browsed 5710 times, has been downloaded 50 times.
中文摘要
研究動機:
胰臟癌 (Pancreatic cancer) 是一種臨床上難以早期診斷之癌症,且胰臟是人體消化系統中最重要的器官之一,癌細胞除了會造成胰臟中的脂肪酶、澱粉酶等滲漏而侵襲腹部鄰近的消化器官,也會快速轉移侵犯像是腸胃、肝和膽管等,導致常見的胰臟癌症狀有腹部疼痛、黃疸以及體重急降。因此,具有無警示性質、高轉移能力及化療抵抗力的胰臟癌,往往發現症狀時已經是晚期,五年存活率小於5%,然而目前唯一有效的治療方式只有早期診斷並手術切除。
研究目的:
因此,有其迫切及必要性來開發一種生物感測系統,可以快速準確地偵測早期胰臟癌生物因子。癌症抗原19-9 (CA19-9) 是一種由美國食品藥物管理署核准通過,最普遍應用於胰臟癌篩檢的癌指數,然而癌症抗原19-9在胰臟癌診斷上專一性 (82%) 及敏感性 (79%) 上仍顯不足,因此我們需要搭配另一種更具專一及敏感性的生物分子來開發我們的生物感測系統。黏液素1 (MUC1) 是一種在癌細胞膜表面上高度表現的蛋白,是目前最新研究上,針對早期胰臟癌檢測的新穎生物標記物,敏感性及專一性為82%及95%。
研究方法:
本研究中,發展了一種具備不同抗體 (anti-CA 19-9及anti-MUC1) 的磁性生物感測液體,可以快速且專一的捕捉到這兩種癌症抗原。固定了這兩種不同的抗體於奈米金桿上去作為第二層次的生物辨識及轉導元件,而且利用奈米金桿在強還原劑中能催化降解甲基橙試劑 (特定吸收光譜508 nm) 的特性,作為一衰減式比色光學生物感測系統。
研究結果:
在此設計中,當磁性感測液體固定的抗體捕捉到癌症抗原後,經磁石分離清洗,便加入96孔盤中,此時奈米金桿會透過三明治免疫的方式,結合到96孔盤底部的抗體上。最後,在反應完且清洗後的孔盤中,加入含有強還原劑-硼氫化鈉及甲基橙之溶液。當癌症抗原濃度越高時,磁性感測粒子就會捕捉到越多的抗原,而透過三明治免疫結合至孔盤底部的金桿就會隨之增多,因此,反應後催化降解甲基橙的效率也會提升。透過測定在不同濃度的癌症抗原標準品下,甲基橙吸收光的訊號強度下降趨勢,來分析出本系統的癌症抗原線性偵測範圍。
Abstract
Motivation:
Pancreatic cancer (PC) represents a fatal tumor with a high mortality and poor prognosis. These outcomes can be attributed a lack of early diagnosis and inability to detect pre-cancerous pancreatic intraductal neoplastic (PanIN) lesions. Currently, no clinically reliable biosensing systems for early detection at an early stage of pancreatic cancer are available.
Purpose:
Thus, it’s urgent to develop a biosensing system which can fast and accurately diagnose PC. So far, the carbohydrate antigen (CA19-9) approved by the US Food and Drug Administration (FDA) is the most common biomarker used for several decades. However, it has limited value in diagnosis of early stages of PC. Mucin1 (MUC1) , a cell surface associated protein, is an emerging biomarker associated with early development of PC.
Methods:
Therefore, we develop a magnetic biosensing liquid modified with CA19-9 antibody and MUC1 antibody for the rapid and specific capturing of these two cancer antigens. Besides, we immobilize the anti-CA19-9 and anti-MUC1 onto the gold nanorods, which can catalyze the reduction of the methyl orange (Absorption at 508 nm) with the sodium bromide.
Results:
In this design, after the cancer antigens bind to the magnetic biosensing liquid, we add the liquid into the plate coated with antibodies to become sandwich immunosorbent conjugates. Finally, after washing the plate, we add the solution of methyl orange and sodium bromide into it.
Therefore, with increasing concentrations of cancer antigens, the more magnetic biosensing particles will bind onto the bottom of plate. And the efficiency of the catalytic degradation of methyl orange in a certain period of time will increase. In the end, we can use the downtrend of the absorption intensity under different concentrations of cancer antigens to analyze the linear detection range of our biosensing system.
目次 Table of Contents
目錄
審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 xii
第1章 緒論 1
1-1 胰臟癌 1
1-1-1 概況 1
1-1-2 胰臟癌種類及成因 2
1-1-3 診斷 6
1-1-4 治療方式 10
1-2 生物感測器的介紹 11
1-2-1 不同類型之生物識別元件 12
1-2-2 不同類型之轉導元件 19
1-3 應用於胰臟癌抗原檢測之生物標誌及感測器 32
1-4 研究動機與目的 34
第2章 材料與方法 35
2-1 實驗藥品 35
2-2 儀器與設備 37
2-3 研究方法 38
2-4 奈米金桿膠體及改質不同分子的製備步驟 39
2-4-1 製備原理及過程 39
2-4-2 金桿表面牛血清蛋白的改質 40
2-4-3 以樹枝狀聚乙烯亞胺包覆之GNR@BSA製備 41
2-5 磁性奈米粒子製備及改質之步驟 41
2-5-1 磁性奈米粒子的製備 41
2-5-2 以牛血清蛋白包覆之磁性奈米粒子的製備 42
2-5-3 以樹枝狀聚乙烯亞胺包覆之Fe3O4@BSA的製備 43
2-6 牛血清蛋白改質及包覆bPEI材料催化甲基橙之光學測定實驗 43
2-7 磁性生物感測粒子及具抗體之塑膠孔盤的製備 44
2-7-1 磁性奈米粒子與半胱胺修飾之金桿複合物製備 44
2-7-2 半胱胺及樹枝狀聚乙烯亞胺金桿之催化能力比較 45
2-7-3 磁性生物感測粒子的抗體修飾 45
2-7-4 抗體固定於塑膠孔盤的製備流程 46
2-8 各種製備材料之鑑定分析及性質研究 47
2-8-1 吸收光譜分析 47
2-8-2 表面電位分析 47
2-8-3 穿透式電子顯微鏡 (TEM) 分析 48
2-8-4 傅立葉轉換紅外線光譜 (FTIR) 分析 48
2-8-5 X光高解析電子能譜儀 (XPS) 分析 48
2-8-6 超導量子干涉儀 (SQUID) 分析 48
2-8-7 基於化學發光 (Chemiluminescence) 的二抗免疫分析 49
2-9 CA19-9及MUC1癌症抗原的光學檢測 50
2-9-1 磁性生物感測粒子的催化能力測試 50
2-9-2 磁性生物感測粒子的穩定性測試 50
2-9-3 甲基橙之光學性質測試 50
2-9-4 單一抗原之光學檢測 50
第3章 結果與討論 52
3-1 奈米金桿膠體的製備及改質 52
3-1-1 不同體積硝酸銀對奈米金桿膠體溶液的影響 53
3-1-2 不同體積晶種液對奈米金桿膠體溶液的影響 55
3-1-3 金桿表面牛血清蛋白的改質 56
3-2 磁性奈米粒子的製備與改質 59
3-2-1 磁性奈米粒子的製備 60
3-2-2 磁性奈米粒子表面牛血清蛋白的包覆 61
3-3 催化甲基橙之光學測定實驗 65
3-3-1 牛血清蛋白改質材料之催化測試 66
3-3-2 以bPEI包覆之GNR@BSA及Fe3O4@BSA製備 68
3-3-3 包覆bPEI之材料催化測試 69
3-4 磁性生物感測粒子及具抗體之塑膠孔盤的製備 73
3-4-1 磁性奈米粒子與半胱胺修飾之金桿複合物製備 73
3-4-2 磁性生物感測粒子的抗體修飾 77
3-4-3 抗體固定於塑膠孔盤的製備 80
3-5 CA19-9及MUC1癌症抗原的光學檢測 83
3-5-1 磁性生物感測粒子的催化能力測試 83
3-5-2 磁性生物感測粒子的穩定性測試 87
3-5-3 單一抗原之光學檢測 88
第4章 結論 91
參考文獻 92
參考文獻 References
1. 中華民國衛生福利部, 104年度主要死因結果統計分析. 2016.
2. Stewart, B. W.; Wild, C. P., World Cancer Report 2014. IARC Press: 2014; Vol. 5.7.
3. Hariharan, D.; Saied, A.; Kocher, H. M., Analysis of mortality rates for pancreatic cancer across the world. HPB : The Official Journal of the International Hepato Pancreato Biliary Association 2008, 10 (1), 58-62.
4. Edge, S. B.; Compton, C. C., The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of surgical oncology 2010, 17 (6), 1471-4.
5. Cascinu, S.; Falconi, M.; Valentini, V.; Jelic, S., Pancreatic cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2010, 21 (suppl_5), v55-v58.
6. Education, D., TNM and number staging. 2014, 2017.
7. Bosetti, C.; Lucenteforte, E.; Silverman, D. T.; Petersen, G.; Bracci, P. M.; Ji, B. T.; Negri, E.; Li, D.; Risch, H. A.; Olson, S. H.; Gallinger, S.; Miller, A. B.; Bueno-de-Mesquita, H. B.; Talamini, R.; Polesel, J.; Ghadirian, P.; Baghurst, P. A.; Zatonski, W.; Fontham, E.; Bamlet, W. R.; Holly, E. A.; Bertuccio, P.; Gao, Y. T.; Hassan, M.; Yu, H.; Kurtz, R. C.; Cotterchio, M.; Su, J.; Maisonneuve, P.; Duell, E. J.; Boffetta, P.; La Vecchia, C., Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Annals of Oncology 2012, 23 (7), 1880-1888.
8. Larsson, S. C.; Wolk, A., Red and processed meat consumption and risk of pancreatic cancer: meta-analysis of prospective studies. Br J Cancer 2012, 106 (3), 603-607.
9. Peters, M. L. B.; Tseng, J. F.; Miksad, R. A., Genetic Testing in Pancreatic Ductal Adenocarcinoma: Implications for Prevention and Treatment. Clinical Therapeutics 2016, 38 (7), 1622-1635.
10. Reznik, R.; Hendifar, A. E.; Tuli, R., Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma. Frontiers in Physiology 2014, 5, 87.
11. Wolfgang, C. L.; Herman, J. M.; Laheru, D. A.; Klein, A. P.; Erdek, M. A.; Fishman, E. K.; Hruban, R. H., Recent Progress in Pancreatic Cancer. CA: a cancer journal for clinicians 2013, 63 (5), 318-348.
12. De La Cruz, M. S.; Young, A. P.; Ruffin, M. T., Diagnosis and management of pancreatic cancer. American family physician 2014, 89 (8), 626-32.
13. Siegel, R.; Naishadham, D.; Jemal, A., Cancer statistics, 2013. CA: a cancer journal for clinicians 2013, 63 (1), 11-30.
14. Bardeesy, N.; DePinho, R. A., Pancreatic cancer biology and genetics. Nature reviews. Cancer 2002, 2 (12), 897-909.
15. Siegel, R. L.; Miller, K. D.; Jemal, A., Cancer statistics, 2016. CA: a cancer journal for clinicians 2016, 66 (1), 7-30.
16. Lee, E. S.; Lee, J. M., Imaging diagnosis of pancreatic cancer: a state-of-the-art review. World journal of gastroenterology 2014, 20 (24), 7864-77.
17. Conrad, C.; Fernandez-Del Castillo, C., Preoperative evaluation and management of the pancreatic head mass. Journal of surgical oncology 2013, 107 (1), 23-32.
18. Schima, W.; Ba-Ssalamah, A.; Kolblinger, C.; Kulinna-Cosentini, C.; Puespoek, A.; Gotzinger, P., Pancreatic adenocarcinoma. European radiology 2007, 17 (3), 638-49.
19. Volmar, K. E.; Vollmer, R. T.; Jowell, P. S.; Nelson, R. C.; Xie, H. B., Pancreatic FNA in 1000 cases: a comparison of imaging modalities. Gastrointestinal endoscopy 2005, 61 (7), 854-61.
20. Puli, S. R.; Bechtold, M. L.; Buxbaum, J. L.; Eloubeidi, M. A., How good is endoscopic ultrasound-guided fine-needle aspiration in diagnosing the correct etiology for a solid pancreatic mass?: A meta-analysis and systematic review. Pancreas 2013, 42 (1), 20-6.
21. Chen, J.; Yang, R.; Lu, Y.; Xia, Y.; Zhou, H., Diagnostic accuracy of endoscopic ultrasound-guided fine-needle aspiration for solid pancreatic lesion: a systematic review. Journal of cancer research and clinical oncology 2012, 138 (9), 1433-41.
22. Gusmini, S.; Nicoletti, R.; Martinenghi, C.; Del Maschio, A., Vascular involvement in periampullary tumors: MDCT, EUS, and CDU. Abdominal imaging 2009, 34 (4), 514-22.
23. Raman, S. P.; Horton, K. M.; Fishman, E. K., Multimodality imaging of pancreatic cancer-computed tomography, magnetic resonance imaging, and positron emission tomography. Cancer journal (Sudbury, Mass.) 2012, 18 (6), 511-22.
24. Bhat, K.; Wang, F.; Ma, Q.; Li, Q.; Mallik, S.; Hsieh, T. C.; Wu, E., Advances in biomarker research for pancreatic cancer. Current pharmaceutical design 2012, 18 (17), 2439-51.
25. Sahani, D. V.; Bonaffini, P. A.; Catalano, O. A.; Guimaraes, A. R.; Blake, M. A., State-of-the-art PET/CT of the pancreas: current role and emerging indications. Radiographics : a review publication of the Radiological Society of North America, Inc 2012, 32 (4), 1133-58; discussion 1158-60.
26. Kauhanen, S. P.; Komar, G.; Seppanen, M. P.; Dean, K. I.; Minn, H. R.; Kajander, S. A.; Rinta-Kiikka, I.; Alanen, K.; Borra, R. J.; Puolakkainen, P. A.; Nuutila, P.; Ovaska, J. T., A prospective diagnostic accuracy study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Annals of surgery 2009, 250 (6), 957-63.
27. von Schulthess, G. K.; Steinert, H. C.; Hany, T. F., Integrated PET/CT: current applications and future directions. Radiology 2006, 238 (2), 405-22.
28. Gold, P.; Freedman, S. O., DEMONSTRATION OF TUMOR-SPECIFIC ANTIGENS IN HUMAN COLONIC CARCINOMATA BY IMMUNOLOGICAL TOLERANCE AND ABSORPTION TECHNIQUES. The Journal of Experimental Medicine 1965, 121 (3), 439.
29. Goonetilleke, K. S.; Siriwardena, A. K., Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. European Journal of Surgical Oncology (EJSO) 2007, 33 (3), 266-270.
30. Koprowski, H.; Herlyn, M.; Steplewski, Z.; Sears, H. F., Specific antigen in serum of patients with colon carcinoma. Science 1981, 212 (4490), 53.
31. Ni, X. G.; Bai, X. F.; Mao, Y. L.; Shao, Y. F.; Wu, J. X.; Shan, Y.; Wang, C. F.; Wang, J.; Tian, Y. T.; Liu, Q.; Xu, D. K.; Zhao, P., The clinical value of serum CEA, CA19-9, and CA242 in the diagnosis and prognosis of pancreatic cancer. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 2005, 31 (2), 164-9.
32. Perkins, G. L.; Slater, E. D.; Sanders, G. K.; Prichard, J. G., Serum tumor markers. American family physician 2003, 68 (6), 1075-82.
33. Duffy, M. J.; Sturgeon, C.; Lamerz, R.; Haglund, C.; Holubec, V. L.; Klapdor, R.; Nicolini, A.; Topolcan, O.; Heinemann, V., Tumor markers in pancreatic cancer: a European Group on Tumor Markers (EGTM) status report. Annals of oncology : official journal of the European Society for Medical Oncology 2010, 21 (3), 441-7.
34. Locker, G. Y.; Hamilton, S.; Harris, J.; Jessup, J. M.; Kemeny, N.; Macdonald, J. S.; Somerfield, M. R.; Hayes, D. F.; Bast, R. C., Jr., ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2006, 24 (33), 5313-27.
35. Chakraborty, S.; Baine, M. J.; Sasson, A. R.; Batra, S. K., Current status of molecular markers for early detection of sporadic pancreatic cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2011, 1815 (1), 44-64.
36. Pappas, S.; Krzywda, E.; McDowell, N., Nutrition and Pancreaticoduodenectomy. Nutrition in Clinical Practice 2010, 25 (3), 234-243.
37. Borazanci, E.; Von Hoff, D. D., Nab-paclitaxel and gemcitabine for the treatment of patients with metastatic pancreatic cancer. Expert Review of Gastroenterology & Hepatology 2014, 8 (7), 739-747.
38. Heinemann, V.; Haas, M.; Boeck, S., Neoadjuvant treatment of borderline resectable and non-resectable pancreatic cancer. Annals of Oncology 2013, 24 (10), 2484-2492.
39. Van Cutsem, E.; Vervenne, W. L.; Bennouna, J.; Humblet, Y.; Gill, S.; Van Laethem, J.-L.; Verslype, C.; Scheithauer, W.; Shang, A.; Cosaert, J.; Moore, M. J., Phase III Trial of Bevacizumab in Combination With Gemcitabine and Erlotinib in Patients With Metastatic Pancreatic Cancer. Journal of Clinical Oncology 2009, 27 (13), 2231-2237.
40. Bond-Smith, G.; Banga, N.; Hammond, T. M.; Imber, C. J., Pancreatic adenocarcinoma. BMJ : British Medical Journal 2012, 344.
41. Kruss, S.; Hilmer, A. J.; Zhang, J.; Reuel, N. F.; Mu, B.; Strano, M. S., Carbon nanotubes as optical biomedical sensors. Advanced Drug Delivery Reviews 2013, 65 (15), 1933-1950.
42. Mohanty, S. P.; Kougianos, E., Biosensors: a tutorial review. IEEE Potentials 2006, 25 (2), 35-40.
43. Rizzuto, R.; Pinton, P.; Brini, M.; Chiesa, A.; Filippin, L.; Pozzan, T., Mitochondria as biosensors of calcium microdomains. Cell Calcium 1999, 26 (5), 193-200.
44. Akyilmaz, E.; Dinçkaya, E., An amperometric microbial biosensor development based on Candida tropicalis yeast cells for sensitive determination of ethanol. Biosensors and Bioelectronics 2005, 20 (7), 1263-1269.
45. Sanders, C. A.; Rodriguez Jr, M.; Greenbaum, E., Stand-off tissue-based biosensors for the detection of chemical warfare agents using photosynthetic fluorescence induction. Biosensors and Bioelectronics 2001, 16 (7–8), 439-446.
46. Dubey, R. S.; Upadhyay, S. N., Microbial corrosion monitoring by an amperometric microbial biosensor developed using whole cell of Pseudomonas sp. Biosensors and Bioelectronics 2001, 16 (9–12), 995-1000.
47. Iyer, P. V.; Ananthanarayan, L., Enzyme stability and stabilization—Aqueous and non-aqueous environment. Process Biochemistry 2008, 43 (10), 1019-1032.
48. Chen, Q.; Zhang, L.; Jiang, F.; Wang, B.; Lv, T.; Zeng, Z.; Wu, W.; Sun, S., MnO2 microsphere absorbing Cy5-labeled single strand DNA probe serving as powerful biosensor for effective detection of mycoplasma ovipneumoniae. Sensors and Actuators B: Chemical 2017, 244, 1138-1144.
49. Deng, H.; Liu, Q.; Wang, X.; Huang, R.; Liu, H.; Lin, Q.; Zhou, X.; Xing, D., Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy. Biosensors and Bioelectronics 2017, 87, 931-940.
50. Aktas, Gülsen B.; Skouridou, V.; Masip, L., Novel signal amplification approach for HRP-based colorimetric genosensors using DNA binding protein tags. Biosensors and Bioelectronics 2015, 74, 1005-1010.
51. Dhiman, A.; Kalra, P.; Bansal, V.; Bruno, J. G.; Sharma, T. K., Aptamer-based point-of-care diagnostic platforms. Sensors and Actuators B: Chemical 2017, 246, 535-553.
52. Jarczewska, M.; Sheelam, S. R.; Ziółkowski, R.; Górski, Ł., A Label-Free Electrochemical DNA Aptasensor for the Detection of Dopamine. Journal of The Electrochemical Society 2016, 163 (3), B26-B31.
53. Jarczewska, M.; Górski, Ł.; Malinowska, E., Application of DNA aptamers as sensing layers for electrochemical detection of potassium ions. Sensors and Actuators B: Chemical 2016, 226, 37-43.
54. Zhang, J.-J.; Cheng, F.-F.; Zheng, T.-T.; Zhu, J.-J., Versatile aptasensor for electrochemical quantification of cell surface glycan and naked-eye tracking glycolytic inhibition in living cells. Biosensors and Bioelectronics 2017, 89, Part 2, 937-945.
55. He, Y.; Lin, Y.; Tang, H.; Pang, D., A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1. Nanoscale 2012, 4 (6), 2054-2059.
56. Khater, M.; de la Escosura-Muñiz, A.; Merkoçi, A., Biosensors for plant pathogen detection. Biosensors and Bioelectronics 2017, 93, 72-86.
57. Wang, C.-H.; Chang, C.-P.; Lee, G.-B., Integrated microfluidic device using a single universal aptamer to detect multiple types of influenza viruses. Biosensors and Bioelectronics 2016, 86, 247-254.
58. Wang, K.; Fan, D.; Liu, Y.; Wang, E., Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy. Biosensors and Bioelectronics 2015, 73, 1-6.
59. Oliphant, A. R.; Brandl, C. J.; Struhl, K., Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Molecular and Cellular Biology 1989, 9 (7), 2944-2949.
60. Mittal, S.; Kaur, H.; Gautam, N.; Mantha, A. K., Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies. Biosensors and Bioelectronics 2017, 88, 217-231.
61. Van Oss, C. J., Hydrophobic, hydrophilic and other interactions in epitope-paratope binding. Molecular immunology 1995, 32 (3), 199-211.
62. Reverberi, R.; Reverberi, L., Factors affecting the antigen-antibody reaction. Blood Transfusion 2007, 5 (4), 227-240.
63. Chapter 8 Kinetics and nature of antibody-antigen interactions. Laboratory Techniques in Biochemistry and Molecular Biology 1985, 15, 123-149.
64. Barnes, A. E., The specificity of pH and ionic strength effects on the kinetics of the Rh (D)-anti-Rh (D) system. Journal of immunology (Baltimore, Md. : 1950) 1966, 96 (5), 854-64.
65. Hobbs, H.; Reddy, D.; Rajeshwari, R.; Reddy, A., Use of Direct Antigen Coating and Protein A Coating ELISA Procedures. Plant disease 1987, 747.
66. Koenig, R., Indirect ELISA methods for the broad specificity detection of plant viruses. Journal of General Virology 1981, 55 (1), 53-62.
67. Libeau, G.; Prehaud, C.; Lancelot, R.; Colas, F.; Guerre, L.; Bishop, D.; Diallo, A., Development of a competitive ELISA for detecting antibodies to the peste des petits ruminants virus using a recombinant nucleobrotein. Research in veterinary science 1995, 58 (1), 50-55.
68. Schmidt, S. D.; Mazzella, M. J.; Nixon, R. A.; Mathews, P. M., Aβ measurement by enzyme-linked immunosorbent assay. Amyloid Proteins: Methods and Protocols 2012, 507-527.
69. Li, Q.; Tang, D.; Tang, J.; Su, B.; Huang, J.; Chen, G., Carbon nanotube-based symbiotic coaxial nanocables with nanosilica and nanogold particles as labels for electrochemical immunoassay of carcinoembryonic antigen in biological fluids. Talanta 2011, 84 (2), 538-546.
70. Marques, R. C. B.; Viswanathan, S.; Nouws, H. P. A.; Delerue-Matos, C.; González-García, M. B., Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD. Talanta 2014, 129, 594-599.
71. Chang, Y.-F.; Hung, S.-H.; Lee, Y.-J.; Chen, R.-C.; Su, L.-C.; Lai, C.-S.; Chou, C., Discrimination of Breast Cancer by Measuring Prostate-Specific Antigen Levels in Women's Serum. Analytical Chemistry 2011, 83 (13), 5324-5328.
72. Pohanka, M.; Skládal, P., Electrochemical biosensors–principles and applications. J. Appl. Biomed 2008, 6 (2), 57-64.
73. Wilkinson, A. D. M. a. A., Compendium of Chemical Terminology. 2nd ed.; IUPAC: 1997.
74. Arya, S. K.; Wang, K. Y.; Wong, C. C.; Rahman, A. R. A., Anti-EpCAM modified LC-SPDP monolayer on gold microelectrode based electrochemical biosensor for MCF-7 cells detection. Biosensors and Bioelectronics 2013, 41, 446-451.
75. Devillers, M.; Ahmad, L.; Korri-Youssoufi, H.; Salmon, L., Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma. Biosensors and Bioelectronics 2017, 96, 178-185.
76. Elshafey, R.; Tavares, A. C.; Siaj, M.; Zourob, M., Electrochemical impedance immunosensor based on gold nanoparticles–protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosensors and Bioelectronics 2013, 50, 143-149.
77. Lin, C.-W.; Wei, K.-C.; Liao, S.-s.; Huang, C.-Y.; Sun, C.-L.; Wu, P.-J.; Lu, Y.-J.; Yang, H.-W.; Ma, C.-C. M., A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis. Biosensors and Bioelectronics 2015, 67, 431-437.
78. Mao, L.; Yuan, R.; Chai, Y.; Zhuo, Y.; Xiang, Y., Signal-enhancer molecules encapsulated liposome as a valuable sensing and amplification platform combining the aptasensor for ultrasensitive ECL immunoassay. Biosensors and Bioelectronics 2011, 26 (10), 4204-4208.
79. Zhu, D.; Zhou, X.; Xing, D., Ultrasensitive aptamer-based bio bar code immunomagnetic separation and electrochemiluminescence method for the detection of protein. Analytica Chimica Acta 2012, 725, 39-43.
80. Lin, Y.; Dai, H.; Xu, G.; Yang, T.; Yang, C.; Tong, Y.; Yang, Y.; Chen, G., Enhanced luminol electrochemiluminescence triggered by an electrode functionalized with dendrimers modified with titanate nanotubes. Microchimica Acta 2013, 180 (7), 563-572.
81. Li, F.; Cui, H., A label-free electrochemiluminescence aptasensor for thrombin based on novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles. Biosensors and Bioelectronics 2013, 39 (1), 261-267.
82. Zang, Y.; Lei, J.; Ju, H., Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosensors and Bioelectronics 2017, 96, 8-16.
83. Jie, G.; Tan, L.; Zhao, Y.; Wang, X., A novel silver nanocluster in situ synthesized as versatile probe for electrochemiluminescence and electrochemical detection of thrombin by multiple signal amplification strategy. Biosensors and Bioelectronics 2017, 94, 243-249.
84. Jiang, X.; Wang, H.; Yuan, R.; Chai, Y., Sensitive electrochemiluminescence detection for CA15-3 based on immobilizing luminol on dendrimer functionalized ZnO nanorods. Biosensors and Bioelectronics 2015, 63, 33-38.
85. Zhang, X.; Guo, W.; Wang, Z.; Ke, H.; Zhao, W.; Zhang, A.; Huang, C.; Jia, N., A sandwich electrochemiluminescence immunosensor for highly sensitive detection of alpha fetal protein based on MoS2-PEI-Au nanocomposites and Au@BSA core/shell nanoparticles. Sensors and Actuators B: Chemical.
86. Zhou, H.; Gan, N.; Li, T.; Cao, Y.; Zeng, S.; Zheng, L.; Guo, Z., The sandwich-type electrochemiluminescence immunosensor for α-fetoprotein based on enrichment by Fe3O4-Au magnetic nano probes and signal amplification by CdS-Au composite nanoparticles labeled anti-AFP. Analytica Chimica Acta 2012, 746, 107-113.
87. Derfus, A. M.; Chan, W. C.; Bhatia, S. N., Probing the cytotoxicity of semiconductor quantum dots. Nano letters 2004, 4 (1), 11-18.
88. Wei, W.; Lu, Y.; Chen, W.; Chen, S., One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. Journal of the American Chemical Society 2011, 133 (7), 2060-2063.
89. Hesari, M.; Workentin, M. S.; Ding, Z., Thermodynamic and Kinetic Origins of Au250 Nanocluster Electrochemiluminescence. Chemistry-A European Journal 2014, 20 (46), 15116-15121.
90. Rudroff, C.; Seibold, S.; Kaufmann, R.; Cu Zetina, C.; Reise, K.; Schäfer, U.; Schneider, A.; Brockmann, M.; Scheele, J.; Neugebauer, E. A., Expression of the thrombin receptor PAR-1 correlates with tumour cell differentiation of pancreatic adenocarcinoma in vitro. Clinical and Experimental Metastasis 2002, 19 (2), 181-189.
91. Ranjan, R.; Esimbekova, E. N.; Kratasyuk, V. A., Rapid biosensing tools for cancer biomarkers. Biosensors and Bioelectronics 2017, 87, 918-930.
92. Zeng, S.; Baillargeat, D.; Ho, H.-P.; Yong, K.-T., Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chemical Society Reviews 2014, 43 (10), 3426-3452.
93. Guo, X., Surface plasmon resonance based biosensor technique: a review. Journal of biophotonics 2012, 5 (7), 483-501.
94. Liu, R.; Wang, Q.; Li, Q.; Yang, X.; Wang, K.; Nie, W., Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosensors and Bioelectronics 2017, 87, 433-438.
95. Petryayeva, E.; Krull, U. J., Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Analytica chimica acta 2011, 706 (1), 8-24.
96. Liz-Marzán, L. M., Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006, 22 (1), 32-41.
97. Lu, X.; Rycenga, M.; Skrabalak, S. E.; Wiley, B.; Xia, Y., Chemical synthesis of novel plasmonic nanoparticles. Annual review of physical chemistry 2009, 60, 167-192.
98. Guo, Y.-J.; Sun, G.-M.; Zhang, L.; Tang, Y.-J.; Luo, J.-J.; Yang, P.-H., Multifunctional optical probe based on gold nanorods for detection and identification of cancer cells. Sensors and Actuators B: Chemical 2014, 191, 741-749.
99. Dodson, S. L.; Cao, C.; Zaribafzadeh, H.; Li, S.; Xiong, Q., Engineering plasmonic nanorod arrays for colon cancer marker detection. Biosensors and Bioelectronics 2015, 63, 472-477.
100. Harmer, I. J.; Samuel, D., The FITC-anti-FITC system is a sensitive alternative to biotin-streptavidin in ELISA. Journal of Immunological Methods 1989, 122 (1), 115-121.
101. Park, K.-S.; Tae, J.; Choi, B.; Kim, Y.-S.; Moon, C.; Kim, S.-H.; Lee, H.-S.; Kim, J.; Kim, J.; Park, J.; Lee, J.-H.; Lee, J. E.; Joh, J.-W.; Kim, S., Characterization, in vitro cytotoxicity assessment, and in vivo visualization of multimodal, RITC-labeled, silica-coated magnetic nanoparticles for labeling human cord blood–derived mesenchymal stem cells. Nanomedicine: Nanotechnology, Biology and Medicine 2010, 6 (2), 263-276.
102. Wang, L.-W.; Peng, C.-W.; Chen, C.; Li, Y., Quantum dots-based tissue and in vivo imaging in breast cancer researches: current status and future perspectives. Breast Cancer Research and Treatment 2015, 151 (1), 7-17.
103. Liu, L.; Wu, S.; Jing, F.; Zhou, H.; Jia, C.; Li, G.; Cong, H.; Jin, Q.; Zhao, J., Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels. Biosensors and Bioelectronics 2016, 80, 300-306.
104. Valeur, B.; Berberan-Santos, M. N., Molecular fluorescence: principles and applications. John Wiley & Sons: 2012.
105. Hussain, S. A., An introduction to fluorescence resonance energy transfer (FRET). arXiv preprint arXiv:0908.1815 2009.
106. Zhao, B.; Wu, P.; Zhang, H.; Cai, C., Designing activatable aptamer probes for simultaneous detection of multiple tumor-related proteins in living cancer cells. Biosensors and Bioelectronics 2015, 68, 763-770.
107. Khan, P.; Idrees, D.; Moxley, M. A.; Corbett, J. A.; Ahmad, F.; von Figura, G.; Sly, W. S.; Waheed, A.; Hassan, M. I., Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses. Applied biochemistry and biotechnology 2014, 173 (2), 333-355.
108. Zhao, S.; Huang, Y.; Liu, R.; Shi, M.; Liu, Y. M., A nonenzymatic chemiluminescent reaction enabling chemiluminescence resonance energy transfer to quantum dots. Chemistry-A European Journal 2010, 16 (21), 6142-6145.
109. Lee, J. S.; Joung, H.-A.; Kim, M.-G.; Park, C. B., Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay. ACS nano 2012, 6 (4), 2978-2983.
110. Qin, G.; Zhao, S.; Huang, Y.; Jiang, J.; Liu, Y.-M., A sensitive gold nanoparticles sensing platform based on resonance energy transfer for chemiluminescence light on detection of biomolecules. Biosensors and Bioelectronics 2013, 46, 119-123.
111. Huang, X.; Ren, J., Gold nanoparticles based chemiluminescent resonance energy transfer for immunoassay of alpha fetoprotein cancer marker. Analytica Chimica Acta 2011, 686 (1), 115-120.
112. Tak, Y. K.; Song, J. M., Early stage high-content HIV diagnosis based on concurrent monitoring of actin cytoskeleton, CD3, CD4, and CD8. Analytical chemistry 2013, 85 (9), 4273-4278.
113. Zhou, C.-H.; Zhao, J.-Y.; Pang, D.-W.; Zhang, Z.-L., Enzyme-induced metallization as a signal amplification strategy for highly sensitive colorimetric detection of avian influenza virus particles. Analytical chemistry 2014, 86 (5), 2752-2759.
114. Guo, L.; Xu, Y.; Ferhan, A. R.; Chen, G.; Kim, D.-H., Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. Journal of the American Chemical Society 2013, 135 (33), 12338-12345.
115. Lu, W.; Arumugam, S. R.; Senapati, D.; Singh, A. K.; Arbneshi, T.; Khan, S. A.; Yu, H.; Ray, P. C., Multifunctional oval-shaped gold-nanoparticle-based selective detection of breast cancer cells using simple colorimetric and highly sensitive two-photon scattering assay. ACS nano 2010, 4 (3), 1739-1749.
116. Rodríguez-Lorenzo, L.; De La Rica, R.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Stevens, M. M., Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nature materials 2012, 11 (7), 604-607.
117. Guo, Y.; Wu, J.; Li, J.; Ju, H., A plasmonic colorimetric strategy for biosensing through enzyme guided growth of silver nanoparticles on gold nanostars. Biosensors and Bioelectronics 2016, 78, 267-273.
118. Plsson, B.; Masson, P.; Andrén-Sandberg, Å., Tumour marker CA 50 levels compared to signs and symptoms in the diagnosis of pancreatic cancer. European Journal of Surgical Oncology (EJSO) 1997, 23 (2), 151-156.
119. Carpelan-Holmström, M.; Louhimo, J.; Stenman, U.-H.; Alfthan, H.; Haglund, C., CEA, CA 19-9 and CA 72-4 improve the diagnostic accuracy in gastrointestinal cancers. Anticancer research 2002, 22 (4), 2311-2316.
120. Cwik, G.; Wallner, G.; Skoczylas, T.; Ciechanski, A.; Zinkiewicz, K., Cancer antigens 19-9 and 125 in the differential diagnosis of pancreatic mass lesions. Archives of surgery (Chicago, Ill. : 1960) 2006, 141 (10), 968-73; discussion 974.
121. Hyöty, M.; Hyöty, H.; Aaran, R.; Airo, I.; Nordback, I., Tumour antigens CA 195 and CA 19-9 in pancreatic juice and serum for the diagnosis of pancreatic carcinoma. The European journal of surgery= Acta chirurgica 1992, 158 (3), 173-179.
122. Wu, X.; Lu, X. H.; Xu, T.; Qian, J. M.; Zhao, P.; Guo, X. Z.; Yang, X. O.; Jiang, W. J., Evaluation of the diagnostic value of serum tumor markers, and fecal k-ras and p53 gene mutations for pancreatic cancer. Chinese journal of digestive diseases 2006, 7 (3), 170-4.
123. Oremek, G. M.; Eigenbrodt, E.; Radle, J.; Zeuzem, S.; Seiffert, U. B., Value of the serum levels of the tumor marker TUM2-PK in pancreatic cancer. Anticancer research 1997, 17 (4b), 3031-3.
124. He, X.; Zheng, Z.; Li, J.; Ben, Q.; Liu, J.; Zhang, J.; Ji, J.; Yu, B.; Chen, X.; Su, L., DJ-1 promotes invasion and metastasis of pancreatic cancer cells by activating SRC/ERK/uPA. Carcinogenesis 2012, 33 (3), 555-562.
125. Wang, F.; Chen, L.; Ding, W.; Wang, G.; Wu, Y.; Wang, J.; Luo, L.; Cong, H.; Wang, Y.; Ju, S., Serum APRIL, a potential tumor marker in pancreatic cancer. Clinical chemistry and laboratory medicine 2011, 49 (10), 1715-1719.
126. Dutta, S. K.; Girotra, M.; Singla, M.; Dutta, A.; Stephen, F. O.; Nair, P. P.; Merchant, N. B., Serum HSP70: a novel biomarker for early detection of pancreatic cancer. Pancreas 2012, 41 (4), 530.
127. Chang, Y.-T.; Wu, C.-C.; Shyr, Y.-M.; Chen, T.-C.; Hwang, T.-L.; Yeh, T.-S.; Chang, K.-P.; Liu, H.-P.; Liu, Y.-L.; Tsai, M.-H., Secretome-based identification of ULBP2 as a novel serum marker for pancreatic cancer detection. PloS one 2011, 6 (5), e20029.
128. Gold, D. V.; Goggins, M.; Modrak, D. E.; Newsome, G.; Liu, M.; Shi, C.; Hruban, R. H.; Goldenberg, D. M., Detection of early-stage pancreatic adenocarcinoma. Cancer Epidemiology and Prevention Biomarkers 2010, 19 (11), 2786-2794.
129. Gold, D. V.; Karanjawala, Z.; Modrak, D. E.; Goldenberg, D. M.; Hruban, R. H., PAM4-reactive MUC1 is a biomarker for early pancreatic adenocarcinoma. Clinical cancer research 2007, 13 (24), 7380-7387.
130. Roy, L. D.; Sahraei, M.; Subramani, D. B.; Besmer, D.; Nath, S.; Tinder, T. L.; Bajaj, E.; Shanmugam, K.; Lee, Y. Y.; Hwang, S. I., MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene 2011, 30 (12), 1449-1459.
131. Schroeder, J. A.; Adriance, M. C.; Thompson, M. C.; Camenisch, T. D.; Gendler, S. J., MUC1 alters β-catenin-dependent tumor formation and promotes cellular invasion. Oncogene 2003, 22 (9), 1324-1332.
132. Hollingsworth, M. A.; Swanson, B. J., Mucins in cancer: protection and control of the cell surface. Nature Reviews Cancer 2004, 4 (1), 45-60.
133. Zhang, A.; Xiang, H.; Zhang, X.; Guo, W.; Yuan, E.; Huang, C.; Jia, N., A novel sandwich electrochemiluminescence immunosensor for ultrasensitive detection of carbohydrate antigen 19-9 based on immobilizing luminol on Ag@BSA core/shell microspheres. Biosensors and Bioelectronics 2016, 75, 206-212.
134. Sha, Y.; Guo, Z.; Chen, B.; Wang, S.; Ge, G.; Qiu, B.; Jiang, X., A one-step electrochemiluminescence immunosensor preparation for ultrasensitive detection of carbohydrate antigen 19-9 based on multi-functionalized graphene oxide. Biosensors and Bioelectronics 2015, 66, 468-473.
135. Yue, T.; Partyka, K.; Maupin, K. A.; Hurley, M.; Andrews, P.; Kaul, K.; Moser, A. J.; Zeh, H.; Brand, R. E.; Haab, B. B., Identification of blood‐protein carriers of the CA 19‐9 antigen and characterization of prevalence in pancreatic diseases. Proteomics 2011, 11 (18), 3665-3674.
136. Nikoobakht, B.; El-Sayed, M. A., Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials 2003, 15 (10), 1957-1962.
137. Tebbe, M.; Kuttner, C.; Mannel, M.; Fery, A.; Chanana, M., Colloidally Stable and Surfactant-Free Protein-Coated Gold Nanorods in Biological Media. Acs Applied Materials & Interfaces 2015, 7 (10), 5984-5991.
138. Strozyk, M. S.; Chanana, M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M., Protein/Polymer-Based Dual-Responsive Gold Nanoparticles with pH-Dependent Thermal Sensitivity. Advanced Functional Materials 2012, 22 (7), 1436-1444.
139. Wang, C.; Irudayaraj, J., Gold nanorod probes for the detection of multiple pathogens. Small 2008, 4 (12), 2204-2208.
140. Xu, X.; Zhao, Y.; Xue, X.; Huo, S.; Chen, F.; Zou, G.; Liang, X.-J., Seedless synthesis of high aspect ratio gold nanorods with high yield. Journal of Materials Chemistry A 2014, 2 (10), 3528-3535.
141. Busbee, B. D.; Obare, S. O.; Murphy, C. J., An Improved Synthesis of High-Aspect-Ratio Gold Nanorods. Advanced Materials 2003, 15 (5), 414-416.
142. Gao, J.; Bender, C. M.; Murphy, C. J., Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution. Langmuir 2003, 19 (21), 9065-9070.
143. Khan, Z.; Singh, T.; Hussain, J. I.; Hashmi, A. A., Au(III)–CTAB reduction by ascorbic acid: Preparation and characterization of gold nanoparticles. Colloids and Surfaces B: Biointerfaces 2013, 104, 11-17.
144. Huang, X.; Neretina, S.; El‐Sayed, M. A., Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials 2009, 21 (48), 4880-4910.
145. Nikoobakht, B.; El-Sayed, M. A., Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater 2003, 15 (10), 1957-1962.
146. Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P., Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews 2005, 249 (17–18), 1870-1901.
147. Sharma, V.; Park, K.; Srinivasarao, M., Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Materials Science and Engineering: R: Reports 2009, 65 (1–3), 1-38.
148. Chen, H.; Shao, L.; Li, Q.; Wang, J., Gold nanorods and their plasmonic properties. Chemical Society Reviews 2013, 42 (7), 2679-2724.
149. Gou, L.; Murphy, C. J., Fine-tuning the shape of gold nanorods. Chemistry of materials 2005, 17 (14), 3668-3672.
150. Cheng, J.; Ge, L.; Xiong, B.; He, Y., Investigation of pH effect on gold nanorod synthesis. Journal of the Chinese Chemical Society 2011, 58 (6), 822-827.
151. Scarabelli, L.; Sánchez-Iglesias, A.; Pérez-Juste, J.; Liz-Marzán, L. M., A “tips and tricks” practical guide to the synthesis of gold nanorods. ACS Publications: 2015.
152. Oza, G.; Pandey, S.; Shah, R.; Vishwanathan, M.; Kesarkar, R.; Sharon, M.; Sharon, M., Tailoring aspect ratio of gold nano rods: impact of temperature, pH, silver ions, CTAB concentration and centrifugation. Adv Appl Sci Res 2012, 3 (2), 1027-38.
153. Gole, A.; Murphy, C. J., Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chemistry of Materials 2004, 16 (19), 3633-3640.
154. Locatelli, E.; Monaco, I.; Franchini, M. C., Surface modifications of gold nanorods for applications in nanomedicine. RSC Advances 2015, 5 (28), 21681-21699.
155. Ray, P. C.; Yu, H.; Fu, P. P., Toxicity and environmental risks of nanomaterials: challenges and future needs. Journal of Environmental Science and Health Part C 2009, 27 (1), 1-35.
156. Iqbal, M.; Tae, G., Unstable reshaping of gold nanorods prepared by a wet chemical method in the presence of silver nitrate. Journal of nanoscience and nanotechnology 2006, 6 (11), 3355-3359.
157. Dai, Q.; Coutts, J.; Zou, J.; Huo, Q., Surface modification of gold nanorods through a place exchange reaction inside an ionic exchange resin. Chemical communications 2008, (25), 2858-2860.
158. Garabagiu, S.; Bratu, I., Thiol containing carboxylic acids remove the CTAB surfactant onto the surface of gold nanorods: An FTIR spectroscopic study. Applied Surface Science 2013, 284, 780-783.
159. Son, Y. J.; Kim, H.; Leong, K. W.; Yoo, H. S., Multifunctional nanorods serving as nanobridges to modulate T cell-mediated immunity. ACS nano 2013, 7 (11), 9771-9779.
160. Gole, A.; Murphy, C. J., Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization. Chemistry of Materials 2005, 17 (6), 1325-1330.
161. Grabinski, C.; Schaeublin, N.; Wijaya, A.; D’Couto, H.; Baxamusa, S. H.; Hamad-Schifferli, K.; Hussain, S. M., Effect of gold nanorod surface chemistry on cellular response. ACS nano 2011, 5 (4), 2870-2879.
162. Song, J.; Pu, L.; Zhou, J.; Duan, B.; Duan, H., Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS nano 2013, 7 (11), 9947-9960.
163. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. Journal of the American Chemical Society 2009, 131 (3), 888-889.
164. Chanana, M.; Correa-Duarte, M. A.; Liz-Marzán, L. M., Insulin-Coated Gold Nanoparticles: A Plasmonic Device for Studying Metal–Protein Interactions. Small 2011, 7 (18), 2650-2660.
165. Tang, I.-M.; Krishnamra, N.; Charoenphandhu, N.; Hoonsawat, R.; Pon-On, W., Biomagnetic of apatite-coated cobalt ferrite: a core–shell particle for protein adsorption and pH-controlled release. Nanoscale Res Lett 2010, 6 (1), 19.
166. Su, G.; Yang, C.; Zhu, J.-J., Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine. Langmuir 2015, 31 (2), 817-823.
167. Iucci, G.; Polzonetti, G.; Infante, G.; Rossi, L., XPS and FT‐IR spectroscopy study of albumin adsorption on the surface of a π‐conjugated polymer film. Surface and interface analysis 2004, 36 (8), 724-728.
168. Wang, J.; Xiong, G.; Ma, L.; Wang, S.; Zhou, X.; Wang, L.; Xiao, L.; Su, X.; Yu, C., A dynamic sandwich assay on magnetic beads for selective detection of single-nucleotide mutations at room temperature. Biosensors and Bioelectronics 2017, 94, 305-311.
169. Zhang, X.; Song, M.; Yu, X.; Wang, Z.; Ke, Y.; Jiang, H.; Li, J.; Shen, J.; Wen, K., Development of a new broad-specific monoclonal antibody with uniform affinity for aflatoxins and magnetic beads-based enzymatic immunoassay. Food Control 2017, 79, 309-316.
170. Gamarra, L.; Brito, G.; Pontuschka, W.; Amaro, E.; Parma, A.; Goya, G., Biocompatible superparamagnetic iron oxide nanoparticles used for contrast agents: a structural and magnetic study. Journal of Magnetism and Magnetic Materials 2005, 289, 439-441.
171. Rocha-Santos, T. A., Sensors and biosensors based on magnetic nanoparticles. TrAC Trends in Analytical Chemistry 2014, 62, 28-36.
172. Zhang, Y.; Zhou, D., Magnetic particle-based ultrasensitive biosensors for diagnostics. Expert review of molecular diagnostics 2012, 12 (6), 565-571.
173. Hua, M.-Y.; Yang, H.-W.; Chuang, C.-K.; Tsai, R.-Y.; Chen, W.-J.; Chuang, K.-L.; Chang, Y.-H.; Chuang, H.-C.; Pang, S.-T., Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer. Biomaterials 2010, 31 (28), 7355-7363.
174. Samanta, B.; Yan, H.; Fischer, N. O.; Shi, J.; Jerry, D. J.; Rotello, V. M., Protein-passivated Fe3O4 nanoparticles: low toxicity and rapid heating for thermal therapy. Journal of Materials Chemistry 2008, 18 (11), 1204-1208.
175. Yedomon, B.; Fessi, H.; Charcosset, C., Preparation of Bovine Serum Albumin (BSA) nanoparticles by desolvation using a membrane contactor: A new tool for large scale production. European Journal of Pharmaceutics and Biopharmaceutics 2013, 85 (3), 398-405.
176. Li, Z.; Qiang, L.; Zhong, S.; Wang, H.; Cui, X., Synthesis and characterization of monodisperse magnetic Fe3O4@BSA core–shell nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 436, 1145-1151.
177. McIntyre, N.; Zetaruk, D., X-ray photoelectron spectroscopic studies of iron oxides. Analytical Chemistry 1977, 49 (11), 1521-1529.
178. Gupta, N.; Singh, H. P.; Sharma, R. K., Metal nanoparticles with high catalytic activity in degradation of methyl orange: An electron relay effect. Journal of Molecular Catalysis A: Chemical 2011, 335 (1), 248-252.
179. Mallick, K.; Witcomb, M.; Scurrell, M., Silver nanoparticle catalysed redox reaction: an electron relay effect. Materials Chemistry and Physics 2006, 97 (2), 283-287.
180. Jeyachandran, Y.; Mielczarski, E.; Rai, B.; Mielczarski, J., Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces. Langmuir 2009, 25 (19), 11614-11620.
181. Meng, X.; Ryu, J.; Kim, B.; Ko, S., Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality. Clinical nutrition research 2016, 5 (3), 172-179.
182. Lau, Y.-Y.; Wong, Y.-S.; Teng, T.-T.; Morad, N.; Rafatullah, M.; Ong, S.-A., Degradation of cationic and anionic dyes in coagulation–flocculation process using bi-functionalized silica hybrid with aluminum-ferric as auxiliary agent. RSC Advances 2015, 5 (43), 34206-34215.
183. Zhao, X.; Cui, H.; Chen, W.; Wang, Y.; Cui, B.; Sun, C.; Meng, Z.; Liu, G., Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. PloS one 2014, 9 (6), e98919.
184. de Ávila, B. E.-F.; Escamilla-Gómez, V.; Campuzano, S.; Pedrero, M.; Salvador, J.-P.; Marco, M.-P.; Pingarrón, J. M., Ultrasensitive amperometric magnetoimmunosensor for human C-reactive protein quantification in serum. Sensors and Actuators B: Chemical 2013, 188, 212-220.
185. Esteban-Fernández de Ávila, B.; Pedrero, M.; Campuzano, S.; Escamilla-Gómez, V.; Pingarrón, J. M., Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus. Analytical and bioanalytical chemistry 2012, 403 (4), 917-925.
186. Li, H.; Ye, X.; Guo, X.; Geng, Z.; Wang, G., Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. Journal of hazardous materials 2016, 314, 188-196.
187. Khan, M. M.; Lee, J.; Cho, M. H., Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect. Journal of Industrial and Engineering Chemistry 2014, 20 (4), 1584-1590.
188. Yu, F.; Huang, Y.; Cole, A. J.; Yang, V. C., The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials 2009, 30 (27), 4716-4722.
189. Li, L.; Yin, D.; Xu, K.; Liu, Y.; Song, D.; Wang, J.; Zhao, C.; Song, X.; Li, J., A sandwich immunoassay for brucellosis diagnosis based on immune magnetic beads and quantum dots. Journal of Pharmaceutical and Biomedical Analysis 2017, 141, 79-86.
190. Swinehart, D., The beer-lambert law. J. Chem. Educ 1962, 39 (7), 333.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code