Responsive image
博碩士論文 etd-0728118-002621 詳細資訊
Title page for etd-0728118-002621
論文名稱
Title
含銅亞硝酸還原酶及其生化擬態化合物之配位化學與應用
Bio-inspired Cu-NiRs model compounds from coordination chemistry to application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-05
繳交日期
Date of Submission
2018-08-28
關鍵字
Keywords
L-抗壞血酸、電子效應、一氧化氮、亞硝酸還原酶、亞硝酸鹽、立體障礙
L-ascorbic acid, Nitric oxide, Nitrite, Electronic effect, Steric hindrance, Cu-NiRs
統計
Statistics
本論文已被瀏覽 5660 次,被下載 1
The thesis/dissertation has been browsed 5660 times, has been downloaded 1 times.
中文摘要
本篇論文共分為三章節。第一章為前言,主要在介紹亞硝酸還原酶以及其催化反應機制,包含了真實酵素與模擬的仿生化合物的行為。第二章是探討立體障礙與電子效應對於生化擬態CuI-nitro化合物的影響,研究結果發現立體障礙與電子效應有助於增加反應速率與產生之一氧化氮的量。第三章是在有機溶劑中,利用四個系統性的銅二價化合物在有L-抗壞血酸的條件下轉化亞硝酸鹽為一氧化氮。發現在銅二價的催化條件下,中性配位基相較於負電配位基有差不多的最初速率,立體障礙小的也會有較好的最初速率,並且配位基的存在可以提升亞硝酸轉變為一氧化氮的轉換率。配合理論計算的結果,此章節也提出催化過程中最有可能的反應機制。
Abstract
The first chapter introduces copper cantaining nitrite reductase (Cu-NiRs) and its catalytic mechanism which include the real enzymes and bio-inspired model compounds. The second chapter discusses the steric effects and hindrance effects on CuI-nitro complexes. The results show that steric hindrance and electronic effects on ligand can increae the reaction rate and the NO(g) yield. In the third chapter, four copper(II) complexes were chossen to catalyze nitrite to nitric oxide gas. The results suggest that steric hindrance and negative charge on ligand will decrease the initial rate but auxiliary ligand can increase the NO(g) conversion yield.
目次 Table of Contents
學位論文審定書 i
謝誌 ii
摘要(中) iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 x
流程圖目錄 xi
附錄 xii
第一章、緒論 1
1.1 亞硝酸還原酶的分類 1
1.2 含銅亞硝酸還原酶(Cu-NiRs)的蛋白質結構 2
1.3 含銅亞硝酸還原酶(Cu-NiRs)的反應機制演進 8
1.4 含銅亞硝酸還原酶之模型化合物鍵結模式與反應性介紹 15
1.5 含銅亞硝酸還原酶之反應中間體{CuNO}10的模型化合物 28
第二章、生物擬態的銅CuI-nitrite化合物之結構與亞硝酸還原反應性研究:N3配位基電子效應與立體障礙的考量 31
2.1 前言 31
2.2 CuI-nitro化合物的合成與鑑定 34
2.2.1 化合物 [Tpm3-tBuCuI(NO2)] (1) 和 [(Ph3P)2N][Tp3-tBuCuI(NO2)] (2) 的合成 34
2.2.2 化合物[Tpm3-tBuCuI(NO2)] (1) 和化合物 [(Ph3P)2N][Tp3-tBuCuI(NO2)] (2) 的固態結果與液態結構探討 34
2.3 結論 42
第三章、 電子效應以及立體障礙在循環催化亞硝酸根離子轉為一氧化氮的反應機制與效能探討 51
3.1 前言 51
3.2 化合物的合成與催化實驗的描述 55
3.3 催化實驗的結果探討 55
3.4 結論 69
第四章、實驗部分 71
4.1 試藥來源及前處理 71
4.2 儀器部分 72
4.3 實驗步驟 74
4.3.1 化合物[(Ph3P)2N][Tp3-tBuCuI(NO2)] (2)的合成 74
4.3.2 化合物Tpm3-tBuCu(O2CCH3)2] (3)的合成 74
4.3.3 化合物Tpm3-tBuCuII(NO3)2 (7)的合成 74
4.3.4 化合物Tp3-tBuCuIINO3 (8)的合成 75
第五章、參考文獻 76
參考文獻 References
1. Zumft, W. G., Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 1997, 61, 533-616.
2. Godden, J. W.; Turley, S.; Teller, D. C.; Adman, E. T.; Liu, M. Y.; Payne, W. J.; LeGall, J., The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science 1991, 253, 438-442.
3. Murphy, M. E. P.; Turley, S.; Kukimoto, M.; Nishiyama, M.; Horinouchi, S.; Sasaki, H.; Tanokura, M.; Adman, E. T., Structure of Alcaligenes faecalis Nitrite Reductase and a Copper Site Mutant, M150E, That Contains Zinc. Biochemistry 1995, 34, 12107-12117.
4. Wasser, I. M.; Vries, S.; Moenne-Loccoz, P.; Schroder, I.; Karlin, K. D., Nitric Oxide in Biological Denitrification:  Fe/Cu Metalloenzyme and Metal Complex NOx Redox Chemistry. Chem. Rev. 2002, 102, 1201-1234.
5. Averill, B. A., Dissimilatory Nitrite and Nitric Oxide Reductases. Chem. Rev. 1996, 96, 2951- 2964.
6. Silvestrini, M. C.; Tordi, M. G.; Musci, G.; Brunori, M., The reaction of Pseudomonas nitrite reductase and nitrite. A stopped-flow and EPR study. J. Biol. Chem. 1990, 265, 11783-11787.
7. Coyne, M. S.; Arunakumari, A.; Averill, B. A.; M., T. J., Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria. Appl. Environ. Microbiol. 1989, 55, 2924-2931.
8. Willams, P. A.; Fulop, V.; Garman, E. F.; Saumders, N. F.; Ferguson, S. J.; Hajdu, J., Haem-ligand switching during catalysis in crystals of a nitrogen-cycle enzyme. Nature 1997, 389, 406-412.
9. Nurizzo, D.; Cutruzzola, F.; Arese, M.; Bourgesois, D.; Brunori, M.; Cambillau, C.; Tegoni, M., Conformational Changes Occurring upon Reduction and NO Binding in Nitrite Reductase from Pseudomonas aeruginosa. Biochemistry 1998, 37, 13987-13996.
10. Nurizzo, D.; Silvestrini, M. C.; Mathieu, M.; Cutruzzola, F.; Bourgesois, D.; Fulop, V.; Hajdu, J.; Brunori, M.; Tegoni, M.; Cambillau, C., N-terminal arm exchange is observed in the 2.15 Å crystal structure of oxidized nitrite reductase from Pseudomonas aeruginosa. Structure 1997, 5, 1157-1171.
11. Adman, E. T.; Garman, E. F.; Turley, S., The Structure of Copper-nitrite Reductase from Achromobacter cycloclastes at Five pH Values, with NO2− Bound and with Type II Copper Depleted. J. Biol. Chem. 1995, 270, 27458-27474.
12. Dodd, F. E.; Van Beeumen, J.; Eady, R. R.; Hasnain, S., X-ray structure of a blue-copper nitrite reductase in two crystal forms. The nature of the copper sites, mode of substrate binding and recognition by redox partner. J. Mol. Biol. 1998, 282, 369-382.
13. Suzuki, S.; Kataoka, K.; Yamaguchi, K., Acc. Chem. Res. 2000, 33, 728-735.
14. Han, J.; Loehr, T. M.; Lu, Y.; Selverstone-Valentine, J.; Averill, B. A.; Sander-Loehr, J., Resonance Raman excitation profiles indicate multiple Cys .fwdarw. Cu charge transfer transitions in type 1 copper proteins. J. Am. Chem. Soc. 1993, 115, 4256-4263.
15. LaCroix, L. B. S.; Wang, Y.; Averill, B. A.; Hedman, B.; Hodgson, K. O.; Solomon, E. I., Electronic Structure of the Perturbed Blue Copper Site in Nitrite Reductase:  Spectroscopic Properties, Bonding, and Implications for the Entatic/Rack State. J. Am. Chem. Soc. 1996, 118, 7755-7768.
16. Nojiri, M.; Koteishi, H.; Nakagami, T.; Kobayashi, K.; Inoue, T.; Yamaguchi, K.; Suzuki, S., Structural basis of inter-protein electron transfer for nitrite reduction in denitrification. Nature 2009, 462, 117-120.
17. Suzuki, S. K.; Deligger; Yamaguchi, K.; Nakamura, N.; Shidara, S.; Kobayashi, K.; Tagawa, S., Pulse Radiolysis Studies on Nitrite Reductase from Achromobacter cycloclastes IAM 1013: Evidence for Intramolecular Electron Transfer from Type 1 Cu to Type 2 Cu. J. Am. Chem. Soc. 1994, 116, 11145-11146.
18. Yokoyama, H.; Yamaguchi, K.; Sugimoto, M.; Suzuki, S., CuI and CuII Complexes Containing Nitrite and Tridentate Aromatic Amine Ligand as Models for the Substrate‐Binding Type‐2 Cu Site of Nitrite Reductase. Eur. J. Inorg. Chem. 2005, 1435-1441.
19. Usov, O.; Sun, Y.; Grigoryants, V.; Shapleigh, J.; Scholes, C. P., EPR−ENDOR of the Cu(I)NO Complex of Nitrite Reductase. J. Am. Chem. Soc. 2006, 128, 13102-13111.
20. Strange, R. W.; Murphy, L. M.; Dodd, F. E.; Abraham, Z. H. L.; Eady, R. R.; Smith, B. E.; Hasnain, S. S., Structural and kinetic evidence for an ordered mechanism of copper nitrite reductase. J. Mol. Biol. 1999, 287, 1001-1009.
21. Kataoka, K.; Furusawa, H.; Takagi, K.; Yamaguchi, K.; Suzuki, S., Functional Analysis of Conserved Aspartate and Histidine Residues Located Around the Type 2 Copper Site of Copper-Containing Nitri Reductase. J. Biochem. 2000, 127, 345-350.
22. Tocheva, E. I.; Rosell, F. I.; Mauk, A. G.; Murphy, M. E. P., Side-On Copper-Nitrosyl Coordination by Nitrite Reductase. Science 2004, 304, 867-870.
23. Antonyuk, S. V.; Strange, R. W.; Sawers, G.; Eady, R. R.; Hasnain, S. S., Atomic resolution structures of resting-state, substrate- and product-complexed Cu-nitrite reductase provide insight into catalytic mechanism. Proc. Nat. Acad. Sci. U. S. A. 2005, 102, 12041-12046.
24. Ghosh, S.; Dey, A.; Sun, Y.; Scholes, C. P.; Solomon, E. I., Spectroscopic and Computational Studies of Nitrite Reductase: Proton Induced Electron Transfer and Backbonding Contributions to Reactivity. J. Am. Chem. Soc. 2009, 131, 277-288.
25. Fukuda, Y.; Tse, K. M.; Nakane, T.; Nakatsu, T.; Suzuki, M.; Sugahara, M.; Inoue, S.; Masuda, T.; Yumoto, F.; Matsugaki, N.; Nango, E.; Tono, K.; Joti, Y.; Kameshima, T.; Song, C.; Hatsui, T.; Yabashi, M.; Nureki, O.; Murphy, M. E. P.; Inoue, T.; Iwata, S.; Mizohata, E., Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 2928-2933.
26. Averill, B. A., Dissimilatory Nitrite and Nitric Oxide Reductases. Chem. Rev. 1996, 96, 2951-2964.
27. Tocheva, E. I.; Rosell, F. I.; Mauk, A. G.; Murphy, M. E. P., Side-On Copper-Nitrosyl Coordination by Nitrite Reductase. Science 2004, 304, 867.
28. Ghosh, S.; Dey, A.; Sun, Y.; Scholes, C. P.; Solomon, E. I., Spectroscopic and Computational Studies of Nitrite Reductase: Proton Induced Electron Transfer and Backbonding Contributions to Reactivity. J. Am. Chem. Soc. 2009, 131, 277-288.
29. Tocheva, E. I.; Rosell, F. I.; Mauk, A. G.; Murphy, M. E. P., Stable Copper−Nitrosyl Formation by Nitrite Reductase in Either Oxidation State. Biochemistry 2007, 46, 12366-12374.
30. Halfen, J. A.; Mahapatra, S.; Olmstead, M. M.; Tolman, W. B., Synthetic Analogs of Nitrite Adducts of Copper Proteins: Characterization and Interconversion of Dicopper(I,I) and -(I,II) Complexes Bridged Only by NO2-. J. Am. Chem. Soc. 1994, 116, 2173–2174.
31. Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Gengenbach, A. J.; Victor G. Young, J.; Lawrence Que, J.; Tolman, W. B., Synthetic Modeling of Nitrite Binding and Activation by Reduced Copper Proteins. Characterization of Copper(I)−Nitrite Complexes That Evolve Nitric Oxide. J. Am. Chem. Soc. 1996, 118, 763-776.
32. Kujime, M.; Izumi, C.; Tomura, M.; Hada, M.; Fujii, H., Effect of a Tridentate Ligand on the Structure, Electronic Structure, and Reactivity of the Copper(I) Nitrite Complex: Role of the Conserved Three-Histidine Ligand Environment of the Type-2 Copper Site in Copper-Containing Nitrite Reductases. J. Am. Chem. Soc. 2008, 130, 6088-6098.
33. Hitchman, M. A.; Rowbottom, G. L., Transition metal nitrite complexes. Coord. Chem. Rev. 1982, 42, 55-132.
34. Komeda, N.; Nagao, H.; Kushi, Y.; Adachi, G.-y.; Suzuki, M.; Uehara, A.; Tanaka, K., Molecular Structure of Nitro- and Nitrito-Copper Complexes as Reaction Intermediates in Electrochemical Reduction of Nitrite to Dinitrogen Oxide. Bull. Chem. Soc. Jpn. 1995, 68, 581-589.
35. Beretta, M.; Bouwman, E.; Casella, L.; Douziech, B.; Driessen, W. L.; Gutierrez-Soto, L.; Monzani, E.; Reedjik, J., Copper complexes of a new tridentate imidazole-containing ligand: spectroscopy, structures and nitrite reductase reactivity: The molecular structures of [Cu(biap)(NO2)2] and [Cu(biap)Br2]. Inorg. Chim. Acta 2000, 310, 41-50.
36. Tolman, W. B., A model for the substrate adduct of copper nitrite reductase and its conversion to a novel tetrahedral copper(II) triflate complex. Inorg. Chem. 1991, 30, 4877-4880.
37. Ruggiero, C. E.; Carrier, S. M.; Tolman, W. B., Reductive Disproportionation of NO Mediated by Copper Complexes: Modeling N2O Generation by Copper Proteins and Heterogeneous Catalysts. Angew. Chem. Int. Ed. Engl. 1994, 33, 895-897.
38. Casella, L.; Carugo, O., Synthesis, Structure, and Reactivity of Model Complexes of Copper Nitrite Reductase. Inorg. Chem. 1996, 35, 1101-1113.
39. Schneider, J. L.; Carrier, S. M.; Ruggiero, C. E.; Young, V. G., Jr.; Tolman, W. B., Influences of Ligand Environment on the Spectroscopic Properties and Disproportionation Reactivity of Copper−Nitrosyl Complexes. J. Am. Chem. Soc. 1998, 120, 11408-11418.
40. Walsh, A.; Walsh, B.; Murphy, B.; Hathaway, B. J., The structures of bis(2,2'-bipyridyl)mononitritocopper(II) tetrafluoroborate and bis(2,2'-bipyridyl)mononitritozinc(II) nitrate. Acta Crystallogr. 1981, B37, 1512-1520
41. Jiang, F.; Conry, R. R.; Bubacco, L.; Tyeklár, Z.; Jaeobson, R. R.; Karlin, K. D.; Peisach, J., Crystal structure and electron spin echo envelope modulation study of [Cu(II)(TEPA)(NO2)]PF6 (TEPA = tris[2-(2-pyridyl)ethyl]amine): a model for the purported structure of the nitrite derivative of hemocyanin. J. Am. Chem. Soc. 1993, 115, 2093-2102.
42. Stibraney, R. T.; Potenza, J. A.; Schugar, H. J., Synthesis, structure, and spectroscopic properties of (nitrito-O,O′)[tris[2-(1-methyl)imidazolyl]methoxymethane]copper(II), Cu(II)(TIMM)(NO2)2. Inorg. Chim. Acta. 1996, 243, 33-37.
43. Nairn, A. K.; Archibald, S. J.; Bhalla, R.; Boxwell, C. J.; Whitwood, A. C.; Walton, P. H., Syntheses of copper(I) cis-1,3,5-tri-iminocyclohexane complexes. Dalton Trans. 2006, 0, 1790-1795.
44. Kujime, M.; Fujii, H., Spectroscopic Characterization of Reaction Intermediates in a Model for Copper Nitrite Reductase. Angew. Chem. Int. Ed. 2006, 45, 1089-1092.
45. Lehnert, N.; Cornelissen, U.; Neese, F.; Ono, T.; Noguchi, Y.; Okamoto, K.-i.; Fujisawa, K., Synthesis and Spectroscopic Characterization of Copper(II)−Nitrito Complexes with Hydrotris(pyrazolyl)borate and Related Coligands. Inorg. Chem. 2007, 46, 3916-3933.
46. Lott, A. L., II., Unusual five-coordinate complex of copper(II). J. Am. Chem. Soc. 1971, 93, 5313-5314.
47. Klanderman, K. A.; Hamilton, W. C.; Bernal, I., The crystal structure of K3Cu(NO2)3. Inorg. Chim. Acta. 1977, 23, 117-129.
48. A., J.; Halfen; Tolman, W. B., (Nitrito-O,O')bis(triphenylphosphine)copper(I), (PPh3)2Cu(NO2-O,O'). Acta Cryst. 1995, C51, 215-217.
49. Chen, C.-S.; Yeh, W.-Y., Coordination of NO2− ligand to Cu(I) ion in an O,O-bidentate fashion that evolves NO gas upon protonation: a model reaction relevant to the denitrification process. Chem. Commun 2010, 46, 3098-3100.
50. Chuang, W.-J.; Lin, I.-J.; Chen, H.-Y.; Chang, Y.-L.; Hsu, S. C. N., Characterization of A New Copper(I)−Nitrito Complex That Evolves Nitric Oxide. Inorg. Chem. 2010, 49, 5377-5384.
51. Kumar, M.; Dixon, N. A.; Merkle, A. C.; Zeller, M.; Lehnert, N.; Papish, E. T., Hydrotris(triazolyl)borate Complexes as Functional Models for Cu Nitrite Reductase: The Electronic Influence of Distal Nitrogens. Inorg. Chem. 2012, 51, 7004-7006.
52. Hsu, S. C. N.; Chang, Y.-L.; Chuang, W.-J.; Chen, H.-Y.; Lin, I. J.; Chiang, M. Y.; Kao, C.-L.; Chen, H.-Y., Copper(I) Nitro Complex with an Anionic [HB(3,5-Me2Pz)3]− Ligand: A Synthetic Model for the Copper Nitrite Reductase Active Site. Inorg. Chem. 2012, 51, 9297-9308.
53. Kalita, A.; Kumar, P.; Deka, R. C.; Mondal, B., First example of a Cu(I)-(2-O,O) nitrite complex derived from Cu(II)-nitrosyl. Chem. Commun. 2012, 48, 1251-1253.
54. Kundu, S.; Kim, W. Y.; Bertke, J. A.; Warren, T. H., Copper(II) Activation of Nitrite: Nitrosation of Nucleophiles and Generation of NO by Thiols. J. Am. Chem. Soc. 2017, 139, 1045-1048.
55. Sakhaei, Z.; Kundu, S.; Donnelly, J. M.; Bertke, J. A.; Kim, W. Y.; Warren, T. H., Nitric oxide release via oxygen atom transfer from nitrite at copper(II). Chem. Commun. 2017, 53, 549-552.
56. Maji, R. C.; Barman, S. K.; Roy, S.; Chatterjee, S. K.; Bowles, F. L.; Olmstead, M. M.; Patra, A. K., Copper Complexes Relevant to the Catalytic Cycle of Copper Nitrite Reductase: Electrochemical Detection of NO(g) Evolution and Flipping of NO2 Binding Mode upon CuII → CuI Reduction. Inorg. Chem. 2013, 52, 11084-11095.
57. Maji, R. C.; Mishra, S.; Bhandari, A.; Singh, R.; Olmstead, M. M.; Patra, A. K., A Copper(II) Nitrite That Exhibits Change of Nitrite Binding Mode and Formation of Copper(II) Nitrosyl Prior to Nitric Oxide Evolution. Inorg. Chem. 2018, 57, 1550-1561.
58. Enemark, J. H.; Feltham, R. D., Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord. Chem. Rev. 1974, 13, 339-406.
59. Carrier, S. M.; Ruggiero, C. E.; Tolman, W. B.; Jameson, G. B., Synthesis and structural characterization of a mononuclear copper nitrosyl complex. J. Am. Chem. Soc. 1992, 114, 4407-4408.
60. Fujisawa, K.; Tateda, A.; Miyashita, Y.; Okamoto, K.-i.; Paulat, F.; Praneeth, V. K. K.; Merkle, A.; Lehnert, N., Structural and Spectroscopic Characterization of Mononuclear Copper(I) Nitrosyl Complexes:  End-on versus Side-on Coordination of NO to Copper(I). J. Am. Chem. Soc. 2008, 130, 1205-1213.
61. Halfen, J. A.; Mahapatra, S.; Olmstead, M. M.; Tolman, W. B., Synthetic Analogs of Nitrite Adducts of Copper Proteins: Characterization and Interconversion of Dicopper(I,I) and -(I,II) Complexes Bridged Only by NO2. J. Am. Chem. Soc. 1994, 116, 2173-2174.
62. Halfen, J. A.; Tolman, W. B., Synthetic Model of the Substrate Adduct to the Reduced Active Site of Copper Nitrite Reductase. J. Am. Chem. Soc. 1994, 116, 5475-5476.
63. Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Gengenbach, A. J.; Young, V. G. J.; Que, L. J.; Tolman, W. B., J. Am. Chem. Soc. 1996, 118, 763.
64. Kujime, M.; Izumi, C.; Tomura, M.; Hada, M.; Fujii, H., Effect of a Tridentate Ligand on the Structure, Electronic Structure, and Reactivity of the Copper(I) Nitrite Complex: Role of the Conserved Three-Histidine Ligand Environment of the Type-2 Copper Site in Copper-Containing Nitrite Reductases. J. Am. Chem. Soc. 2008, 130, 6088-6098.
65. Moore, C. M.; Szymczak, N. K., Nitrite reduction by copper through ligand-mediated proton and electron transfer. Chem. Sci. 2015, 6, 3373-3377.
66. Fujisawa, K.; Ono, T.; Ishikawa, Y.; Amir, N.; Miyashita, Y.; Okamoto, K.-i.; Lehnert, N., Structural and Electronic Differences of Copper(I) Complexes with Tris(pyrazolyl)methane and Hydrotris(pyrazolyl)borate Ligands. Inorg. Chem. 2006, 45, 1698-1713.
67. 莊宛蓉, 高雄醫學大學醫藥暨應用化學系研究所碩士論文 2010.
68. Reger, D. L.; Collins, J. E.; Rheingold, A. L.; Liable-Sands, L. M., Synthesis and Characterization of Cationic [Tris(pyrazolyl)methane]copper(I) Carbonyl and Acetonitrile Complexes. Organometallics 1996, 15, 2029-2032.
69. Carrier, S. M.; Ruggiero, C. E.; Houser, R. P.; Tolman, W. B., Synthesis, structural characterization, and electrochemical behavior of copper(I) complexes of sterically hindered tris(3-tert-butyl- and 3,5-diphenylpyrazolyl)hydroborate ligands. Inorg. Chem. 1993, 32, 4889-4899.
70. 張育綸, 高雄醫學大學醫藥暨應用化學系研究所碩士論文 2010.
71. Lehnert, N.; Cornelissen, U.; Neese, F.; Ono, T.; Noguchi, Y.; Okamoto, K.-i.; Fujisawa, K., Synthesis and Spectroscopic Characterization of Copper(II)−Nitrito Complexes with Hydrotris(pyrazolyl)borate and Related Coligands. Inorg. Chem. 2007, 46, 3916-3933.
72. Nobutoshi, K.; Hirotaka, N.; Yoshinori, K.; Gin-ya, A.; Masatatsu, S.; Akira, U.; Koji, T., Molecular Structure of Nitro- and Nitrito-Copper Complexes as Reaction Intermediates in Electrochemical Reduction of Nitrite to Dinitrogen Oxide. Bull. Chem. Soc. Jpn. 1995, 68, 581-589.
73. Tolman, W. B., A model for the substrate adduct of copper nitrite reductase and its conversion to a novel tetrahedral copper(II) triflate complex. Inorg. Chem. 1991, 30, 4877-4880.
74. Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Gengenbach, A. J.; Young, V. G.; Que, L.; Tolman, W. B., Synthetic Modeling of Nitrite Binding and Activation by Reduced Copper Proteins. Characterization of Copper(I)−Nitrite Complexes That Evolve Nitric Oxide. J. Am. Chem. Soc. 1996, 118, 763-776.
75. Yokoyama, H.; Yamaguchi, K.; Sugimoto, M.; Suzuki, S., CuI and CuII Complexes Containing Nitrite and Tridentate Aromatic Amine Ligand as Models for the Substrate-Binding Type-2 Cu Site of Nitrite Reductase. Eur. J. Inorg. Chem. 2005, 2005, 1435-1441.
76. Nairn, A. K.; Archibald, S. J.; Bhalla, R.; Boxwell, C. J.; Whitwood, A. C.; Walton, P. H., Syntheses of copper(I) cis-1,3,5-tri-iminocyclohexane complexes. Dalton Trans. 2006, 0, 1790-1795.
77. Chang, Y.-L.; Lin, Y.-F.; Chuang, W.-J.; Kao, C.-L.; Narwane, M.; Chen, H.-Y.; Chiang, M. Y.; Hsu, S. C. N., Structure and Nitrite Reduction Reactivity Study of Bio-inspired Copper(I)-nitro Complexes in Steric and Electronic Considerations of Tridentate Nitrogen Ligand. Dalton Trans. 2018, 47, 5335-5341.
78. Woollard-Shore, J. G.; Holland, J. P.; Jones, M. W.; Dilworth, J. R., Nitrite reduction by copper complexes. Dalton Trans. 2010, 39, 1576-1585.
79. K.Fujisawa; K.Fujita; M.Fujita; Y.Miyashita; Y.Yamada; K.Okamoto, CSD Communication 2009.
80. Shaban, S. Y.; Ramadan, A. E.-M. M.; Ibrahim, M. M.; Mohamed, M. A.; van Eldik, R., Spectroscopic, thermodynamic, kinetic studies and oxidase/antioxidant biomimetic catalytic activities of tris(3,5-dimethylpyrazolyl)borate Cu(II) complexes. Dalton Trans. 2015, 44, 14110-14121.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code