Responsive image
博碩士論文 etd-0728118-085835 詳細資訊
Title page for etd-0728118-085835
論文名稱
Title
海岸鹽沼型濕地沉積物之碳庫與碳匯能力之分析研究-以高美濕地為例
Analysis of Carbon Stock and Carbon Sink Effects for Salt Marsh Wetland-A Case Study in Kaomei wetland
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-14
繳交日期
Date of Submission
2018-08-28
關鍵字
Keywords
海岸鹽沼型濕地、碳庫、溫室氣體、碳源、碳匯
salt marsh wetlands, carbon stocks, greenhouse gases, carbon source, carbon sink
統計
Statistics
本論文已被瀏覽 5842 次,被下載 186
The thesis/dissertation has been browsed 5842 times, has been downloaded 186 times.
中文摘要
自18世紀工業革命過後,工業大幅進步,伴隨而來的是經過燃燒化石燃料而大量增加的二氧化碳,而二氧化碳也是目前最主要的溫室氣體之一。濕地系統中藉由呼吸作用亦會排放二氧化碳(CO2),以及藉由硝化-脫硝作用所釋出之氧化亞氮(N2O)及甲烷發酵反應釋出之甲烷(CH4)等3種溫室氣體,但是濕地內碳匯機制則是藉由光合作用可吸存CO2減緩溫室效應的能力,濕地約佔全球20%的碳儲存量。
藍碳(blue carbon)是近幾年來在碳匯上的研究方向,而藍碳為海洋及沿岸生態系之碳匯及碳吸存能力,其中本研究於2016年10月至2017年6月位於台中市清水區的高美濕地在其植被區進行溫室氣體連續監測及土壤性質分析,藉由空氣及土壤性質評估高美濕地之碳庫及其藍碳碳匯能力。
土壤碳庫估算結果發現,土壤碳含量表土(0~15cm)大於底土(15~30cm),雲林莞草植被區碳庫為304 t C,鹽地鼠尾粟植被區碳庫為133 t C,蘆葦植被區碳庫為116 t C,互花米草植被區碳庫為63 t C,泥灘區碳庫為268 t C,砂石區1碳庫為1512 t C,砂石區2碳庫為1698 t C,總計高美濕地碳庫為4096 t C。各樣區碳庫含量與樣區面積有關,砂石區面積最大因此碳庫含量最高。
從本研究結果得知高美濕地總全球暖化潛勢之估算為碳源濕地,年排放334 t CO2e。但單位面積之碳匯能力分析之結果為互花米草棲地 (2042.88 g CO2e m-2 yr-1)及鹽地鼠尾粟棲地(30.55 g CO2e m-2 yr-1) 對於減緩全球暖化有貢獻,而蘆葦棲地(-162.36 g CO2e m-2 yr-1) 、雲林莞草棲地(-704.66 g CO2e m-2 yr-1) 及泥灘(-1259.48 g CO2e m-2 yr-1)則會增加全球暖化效應。
Abstract
The industry has made great progress since the 18th Century. It was accompanied by a large increase in carbon dioxide emission through the burning of fossil fuels, which becomes the most important greenhouse gas (GHG) presently. The GHGs emitted from wetland systems are mainly carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4), while can depress the carbon sink effects of wetlands and enforce the greenhouse effects of Earth.
Recently, more studies about carbon sink effects were concentrated on “blue carbon”. Blue carbon is defined as the carbon sinks and stocks capacity in marine environment and on coastal ecosystems. The natural wetlands approximately account for 20% of the world's carbon stocks, especially for coastal wetlands, including salty marsh, mangrove swamps, and seagrass beds. In this study, three main GHGs and soil properties were monitored and analyzed for different vegetation areas on Kaomei Salt Marsh Wetland from October 2016 to June 2017. The wetland’s carbon stocks and blue carbon sink effects were then evaluated by those data collected from GHGs emission and soil properties.
Soil carbon was mostly distributed in the depth of 0~15 cm in soils of Kaomei Salt Marsh Wetland. Soil carbon stocks in the soils of the habitats vegetated by Bolboschoenus planiculmis, Sporobolus virginicus, Phragmites communis, Spartina alterniflora, mudflat area, sandstone area 1 and sandstone area 2 were measured equal to 304 t C, 133 t C, 116 t C, 63 t C, 268 t C, 1512 t C, and 1698 t C, respectively. The total soil carbon stocks were then calculated equal to 4096 t C. The soil carbon stocks are affected by different area with different vegetation and soil types.
Continuous monitoring data of GHGs emitted from different habitats in the Kaomei Salt Marsh Wetland, transferring to carbon dioxide equivalent (CO2e) through the global warming potentials (GWPs) for the three main GHGs, the carbon budget flux for Kaomei Salt Marsh Wetland are shown as following: Spartina alterniflora habitat is 2042.88 g CO2e m-2 yr-1, and Sporobolus virginicus habitat is 30.55 g CO2e m-2 yr-1, which exhibit carbon source and present positive greenhouse effect, while Phragmites communis is -162.36 g CO2e m-2 yr-1, Bolboschoenus planiculmis habitat is -704.66 g CO2e m-2 yr-1), and mudflat is -1259.48 g CO2e m-2 yr-1, which showed carbon sink effect, and exhibit negative greenhouse effect.
目次 Table of Contents
學位論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖目錄 ix
表目錄 xii
第一章 前言 1
1.1研究緣起 1
1.2 研究目的 2
1.3研究架構 3
第二章 文獻回顧 4
2.1 濕地的定義與種類 4
2.1.1 濕地的基本定義 4
2.1.2 濕地的類型 6
2.2 濕地系統汙染物去除機制 15
2.2.1 濕地中氮去除機制 17
2.2.2 濕地中磷去除機制 18
2.3溫室氣體之釋出與吸收 19
2.3.1台灣溫室氣體排放之現況 22
2.3.2濕地釋出溫室氣體之機制 25
2.4濕地系統之碳收支平衡 26
2.4.1濕地碳循環 26
2.4.2 全球濕地系統碳匯與碳庫 26
2.5國內外濕地系統碳匯功能之相關研究 29
第三章 研究方法 31
3.1採樣規劃 32
3.1.1 高美濕地採樣規劃 32
3.1.2 高美濕地採樣時間規劃 37
3.2沉積物採樣及分析方法 37
3.2.1 土壤含水率(NIEA S280.61C) 38
3.2.2 土壤酸鹼值(TARI S501.1B) 38
3.2.3 土壤導電度(TARI S101.1B) 38
3.2.4 土壤亞硝酸鹽氮 39
3.2.5 土壤氨氮 39
3.2.6 土壤總凱氏氮 39
3.2.7 土壤可溶性正磷酸鹽 39
3.2.8 土壤可溶性總磷 40
3.2.9 土壤總磷 40
3.2.10 土壤總有機碳 40
3.2.11土壤密度 41
3.2.12土壤粒徑 42
3.3 溫室氣體監測方法與碳匯估算 43
3.3.1 溫室氣體連續監測 43
3.3.2 淨初級生產量分析方法 45
3.3.3 碳收支分析方法 46
3.3.4 濕地碳庫分析方法 47
3.3.5 濕地碳匯估算方法 48
3.4 儀器設備 49
3.5 現場採樣照片 49
第四章 結果與討論 51
4.1高美濕地採樣期間環境因子與氣象條件 51
4.1.1 環境因子 51
4.2高美濕地沉積物中氮營養鹽分析 64
4.2.1 亞硝酸鹽氮 64
4.2.2氨氮 67
4.2.3總凱氏氮 71
4.3高美濕地沉積物中磷營養鹽分析 74
4.3.1水體中正磷酸鹽酸鹽 74
4.3.2水體中總磷酸鹽 77
4.3.3土壤總磷酸鹽 80
4.4高美濕地釋出溫室氣體之濃度變化 83
4.4.1高美濕地CO2濃度排放趨勢 84
4.4.2高美濕地CH4濃度排放趨勢 85
4.4.2高美濕地N2O濃度排放趨勢 86
4.5高美濕地淨初級生產力 87
4.6高美濕地碳吸存能力估算 89
4.7高美濕地碳庫估算 91
4.7.1土壤碳含量 91
4.7.2土壤碳密度 95
4.7.2濕地沉積物之土壤碳庫 96
4.7高美濕地全球暖化潛勢之估算 97
4.7 國內外不同濕地碳匯比較 100
4.9高美濕地溫室氣體與土壤性質相關性分析 100
第五章 結論與建議 105
5.1 結論 105
5.2 建議 106
參考文獻 108
附錄A 114
參考文獻 References
Anderson, C. J. and Mitsch, W. J., (2006). Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes. Wetlands, Vol. 26, Issue. 3, pp. 779-792.
Bartlett, K. B. and Harriss, R. C. (1993). Review and assessment of methane emissions from wetlands. Chemosphere, Vol. 26, Issue. 1-4, pp. 261-320.
Badabate Diwediga., Quang Bao Le., Sampson Agodzo., and Kperkouma Wala., (2017). Potential storages and drivers of soil organic carbon and total nitrogen across river basin landscape: The case of Mo river basin (Togo) in West Africa. Ecological Engineering, Vol. 99, pp. 298-309.
Chen, Y., Chen, G., and Ye, Y., (2015). Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation. Science of the Total Environment, Vol. 526, pp. 19-28.
Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. and Lynch, J. C., (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, Vol. 17, Issue. 4.
Cicerone, R. J. and Oremland, R, S., (1988). Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles, pp. 299–327.
Carlos M. Duarte., Iñigo J. Losada., Iris E. Hendriks., Inés Mazarrasa. and Núria Marbà., (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, Vol. 3, pp. 961-968.
Eric A. Davidson. and Ivan A. Janssens., (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, Vol. 440, pp. 165-173.
Fennessy, S. and Nahlik, A., (2016). Carbon storage in US wetlands. Nature Communications 7.
Franzen, L. G., (1992). Can Earth afford to lose the wetlands in the battle against the increasing greenhouse effect. In International Peat Society Proceedings of International Peat Congress. pp. 1-18.
Gao GF, Li PF, Shen ZJ, Qin YY, Zhang XM1, Ghoto K, Zhu XY. and Zheng HL.,(2018). Exotic Spartina alterniflora invasion increases CH4 while reduces CO2 emissions from mangrove wetland soils in southeastern China. NCBI, Vol.8, Issue. 1.
Hemond, H.F., (1980). Biogeochemistry of Thoreau’s Bog, Concord, Massachusetts. Ecological Monographs, Vol. 50, Issue. 4, pp. 507-526.
Hollie E. Emery. and Robinson W. Fulweiler., (2014). Spartina alterniflora and invasive Phragmites australis stands have similar greenhouse gas emissions in a New England marsh. Aquatic Botany, Vol. 116, pp. 83-92
Julien Tournebize, Cedric Chaumont, and Ülo Mandera., (2016). Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecological Engineering, Vol. 103, Part. B, pp. 415-425.
Josefin Thorslund., Jerker Jarsjo., Fernando Jaramillo., James W. Jawitz., Stefano Manzoni., Nandita B.Basu., Sergey R.Chalov., Matthew J.Cohen.,Irena F.Creed., Romain Goldenberg., Anna Hylin., Zahra Kalantari., Antonis D.Koussis., Steve W.Lyon., Katerina Mazi., Johanna Mard., Klas Persson., Jan Pietro., Carmen Prieto., Andrew Quin., Kimberly Van Meter. and GeorgiaDestouni., (2017). Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering, Vol. 108, Part. B, pp.489-497.

Kayranli, B., Scholz, M., Mustafa, A., and Hedmark, Å., (2010). Carbon storage and fluxes within freshwater wetlands: A critical review. Wetlands, Vol. 30, Issue. 1, pp. 111-124.
Khalia, M. A. K., Shearer, M. J., and Rasmussen, R. A., (1993). CH4 sink and distribution in atmospheric CH4: sources, sink, and role in global change. NATO ASI Series, pp. 168-179.
Liu, X., Li, L., Qi, Z., Han, J. and Zhu, Y., (2017). Land-use impacts on profile distribution of labile and recalcitrant carbon in the Ili River Valley, northwest China. Science of The Total Environment, 586, pp. 1038-1045.
L. C. Burns., R. J. Stevens. and R. J. Laughlin. (1996). Production of nitrite in soil by simultaneous nitrification and denitrification. Soil Biology and Biochemistry, Vol. 28, Issue. 4-5, pp. 609-616.
Lewis M. Cowardin., Virginia Carter., Francis C. Golet. and Edward T. Laroe.,(2005). Classification of Wetlands and Deepwater Habitats of the United States. Water Encyclopedia.
Lunstrum, A. and Chen, L., (2014). Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry, Vol. 75, pp. 223-232.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M. and Silliman, B. R., (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, Vol. 9, Issue 10, pp. 552-560.
Mitsch, W., (1993). Ecological engineering a cooperative role with the planetary life-support system. Environmental Science and Technology, Vol. 27., Issue 3., pp. 438-445.
Mitsch, W. J. and Gosselink, J. G.,(2007). Wetlands, John Wiley and Sons, Inc pp. 177-180.
Mitsch, W. J. and Wu, X., (1995). Wetlands and global change. pp, 205-230, Boca Raton, CRC Lewis Publishers.
Mitsch, W. J., and Gosselink, J. G., (1993). Wetlands. Second Edition. John Wiley and Sons, Inc.
Mitsch, W.J., Gosselink, J.G., (2015). Wetlands, 5th ed. Wiley, Hoboken, NJ.
M.S. Fennessy., D.H. Wardrop., J.B. Moon., S. Wilson., and C. Craft., (2018). Soil carbon sequestration in freshwater wetlands varies across a gradient of ecological condition and by ecoregion. Ecological Engineering, Vol. 114, pp. 129-136.
Nelson, W.L., Mehlich, A. and Winters, E., (1953). The Development, Evaluation, and Use of Soil Tests for Phosphorus Availability P. In Pierre, W.H. and Norman, A.G., Eds., Soil and Fertilizer Phosphorus in Crop Nutrition, Academic Press Inc., New York, pp. 153-188.
Nils Risgaard-Petersen’ and Kim Jensen, (1997). Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. American Society of Limnology and Oceanography, Vol. 42, Issue. 3.
Segers, R., (1998). Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry., vol. 41, Issue 1 , pp. 23-51.
T. W. Crowther., K. E. O. Todd-Brown., C. W. Rowe., W. R. Wieder., J. C. Carey., M. B. Machmuller., B. L. Snoek., S. Fang., G. Zhou., S. D. Allison., J. M. Blair., S. D. Bridgham., A. J. Burton., Y. Carrillo., P. B. Reich., J. S. Clark., A. T. Classen., F. A. Dijkstra., B. Elberling., B. A. Emmett., M. Estiarte., S. D. Frey., J. Guo., J. Harte., L. Jiang., B. R. Johnson., G. Kröel-Dulay., K. S. Larsen., H. Laudon., J. M. Lavallee., Y. Luo., M. Lupascu., L. N. Ma., S. Marhan., A. Michelsen., J. Mohan., S. Niu., E. Pendall., J. Peñuelas., L. Pfeifer-Meister., C. Poll., S. Reinsch., L. L. Reynolds., I. K. Schmidt., S. Sistla., N. W. Sokol., P. H. Templer., K. K. Treseder., J. M. Welker. and M. A. Bradford., (2016). Quantifying global soil carbon losses in response to warming. Nature, Vol. 540, pp. 104-108.
Vymazal, J., (2007). Removal of nutrients in various types of constructed wetlands. Science of The Total Environment, 380(1–3), 48-65.
Watson, J. T., Reed, S. C., Kadlec, R. H., Knight, R. L., and Whitehouse, A. E., (1989). Performance expectations and loading rates for constructed wetlands. Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural. Lewis Publishers, Chelsea Michigan
Yaohong Zhang, Weixin Ding, Jiafa Luo, and AndreaDonnisonb.,(2010). Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biology and Biochemistry, Vol. 42, Issue 10, pp. 1712-1720.
廖璟郡(2012) 新竹香山濕地植物之碳吸存量。國立中興大學生命科學系碩士論文。
陳家璽(2012) 南臺灣淡水埤塘與鹹水潟湖溫室氣體通量之調查。嘉南藥理科技大學環境與工程與科學系碩士論文。
林瑩峰、陳國超(2012)濕地與全球暖化。台灣濕地保護聯盟。
童莉婷(2013) 高美濕地土壤碳存量之時空變化。國立中興大學生命科學系碩士論文。
袁玲、鄭蘭君(1997)長期施肥對土壤酶活性和氮磷養分的影響。植物營養與肥料學報,第4期,第300-306頁。
林幸助、薛美莉(2014)重要濕地開發迴避、衝擊減輕與生態補償機制計畫期末成果報告。內政部營建署城鄉發展分署。
呂國紅、周莉、趙先麗、賈慶宇、謝艷兵、周廣勝(2006)蘆葦濕地土壤有機碳和全氮含量的垂直分布特徵。應用生態學報,第17卷,第3期,第384-389頁。
陳宏銘(2015) 環境微生物及生物處理。
經濟部能源局(2017) 105年度我國燃料燃燒CO2排放統計與分析。
內政部營建署城鄉發展分署(2011)國家重要濕地碳匯功能調查計畫-濕地碳會功能調查標準作業程序。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code